Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boundary-preserving Lamperti-splitting schemes for some Stochastic Differential Equations (2308.04075v3)

Published 8 Aug 2023 in math.NA and cs.NA

Abstract: We propose and analyse boundary-preserving schemes for the strong approximations of some scalar SDEs with non-globally Lipschitz drift and diffusion coefficients whose state-space is bounded. The schemes consists of a Lamperti transform followed by a Lie--Trotter splitting. We prove $L{p}(\Omega)$-convergence of order $1$, for every $p \geq 1$, of the schemes and exploit the Lamperti transform to confine the numerical approximations to the state-space of the considered SDE. We provide numerical experiments that confirm the theoretical results and compare the proposed Lamperti-splitting schemes to other numerical schemes for SDEs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. A. Alfonsi. Strong order one convergence of a drift implicit Euler scheme: application to the CIR process. Statist. Probab. Lett., 83(2):602–607, 2013.
  2. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metallurgica, 27(6):1085–1095, 1979.
  3. Positivity-preserving schemes for some nonlinear stochastic PDEs. Submitted 20.02.2023 to appear in the proceedings of the Sixteenth International Conference Zaragoza-Pau on Mathematics and its Applications 2022.
  4. Analysis of a positivity-preserving splitting scheme for some nonlinear stochastic heat equations. Preprint, arXiv:2302.08858, 2023.
  5. C.-E. Bréhier and L. Goudenège. Analysis of some splitting schemes for the stochastic Allen-Cahn equation. Discrete Contin. Dyn. Syst. Ser. B, 24(8):4169–4190, 2019.
  6. First order strong convergence of an explicit scheme for the stochastic SIS epidemic model. J. Comput. Appl. Math., 392:Paper No. 113482, 16, 2021.
  7. On the LambertW function. Adv Comput Math, 5:329–359, 1996.
  8. Mathematical tools for understanding infectious disease dynamics. Princeton Series in Theoretical and Computational Biology. Princeton University Press, Princeton, NJ, 2013.
  9. T. Funaki. The scaling limit for a stochastic pde and the separation of phases. Probability Theory and Related Fields, 102:221–288, 1995.
  10. A stochastic differential equation SIS epidemic model. SIAM Journal on Applied Mathematics, 71(3):876–902, 2011.
  11. Geometric numerical integration, volume 31 of Springer Series in Computational Mathematics. Springer, Heidelberg, 2010. Structure-preserving algorithms for ordinary differential equations, Reprint of the second (2006) edition.
  12. N. Halidias. Constructing positivity preserving numerical schemes for the two-factor CIR model. Monte Carlo Methods Appl., 21(4):313–323, 2015.
  13. N. Halidias and I. S. Stamatiou. Boundary preserving explicit scheme for the Aït-Sahalia model. Discrete and Continuous Dynamical Systems - B, 28(1):648–664, 2023.
  14. Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients. Ann. Appl. Probab., 22(4):1611–1641, 2012.
  15. S. Karlin and H. E. Taylor. A second course in stochastic processes. Academic Press, 1981.
  16. C. Kelly and G. J. Lord. An adaptive splitting method for the Cox-Ingersoll-Ross process. Appl. Numer. Math., 186:252–273, 2023.
  17. Y. Kiouvrekis and I. S. Stamatiou. Domain preserving and strongly converging explicit scheme for the stochastic SIS epidemic model. Preprint, arXiv:2307.14404, 2023.
  18. F. C. Klebaner. Introduction to Stochastic Calculus with Applications. Imperial Collage Press, 3rd edition, 2012.
  19. P. E. Kloeden and A. Neuenkirch. The pathwise convergence of approximation schemes for stochastic differential equations. LMS J. Comput. Math., 10:235–253, 2007.
  20. P. E. Kloeden and E. Platen. Numerical solution of stochastic differential equations, volume 23 of Applications of Mathematics (New York). Springer-Verlag, Berlin, 1992.
  21. An introduction to computational stochastic PDEs. Cambridge Texts in Applied Mathematics. Cambridge University Press, New York, 2014.
  22. H. P. McKean Jr. Nagumo’s equation. Advances in Mathematics, 4(3):209–223, 1970.
  23. Splitting methods. Acta Numer., 11:341–434, 2002.
  24. J. K. Møller and H. Madsen. From state dependent diffusion to constant diffusion in stochastic differential equations by the lamperti transform. Technical report, Technical University of Denmark, DTU Informatics, Building 321. IMM-Technical Report-2010-16, 2010.
  25. E. Moro and H. Schurz. Boundary preserving semianalytic numerical algorithms for stochastic differential equations. SIAM J. Sci. Comput., 29(4):1525–1549, 2007.
  26. A. Neuenkirch and L. Szpruch. First order strong approximations of scalar SDEs defined in a domain. Numer. Math., 128(1):103–136, 2014.
  27. B. Øksendal. Stochastic differential equations. Universitext. Springer-Verlag, Berlin, sixth edition, 2003. An introduction with applications.
  28. S. Sabanis. Euler approximations with varying coefficients: the case of superlinearly growing diffusion coefficients. Ann. Appl. Probab., 26(4):2083–2105, 2016.
  29. H. Schurz. Numerical regularization for sdes: Construction of nonnegative solutions. Dyn. Syst. Appl., 5(1):323–352, 1996.
  30. H. Yang and J. Huang. First order strong convergence of positivity preserving logarithmic Euler-Maruyama method for the stochastic SIS epidemic model. Appl. Math. Lett., 121:Paper No. 107451, 7, 2021.
  31. H. Yang and J. Huang. Strong convergence and extinction of positivity preserving explicit scheme for the stochastic SIS epidemic model. Numer. Algor., 2023.
  32. Positivity preserving logarithmic Euler-Maruyama type scheme for stochastic differential equations. Commun. Nonlinear Sci. Numer. Simul., 101:Paper No. 105895, 21, 2021.

Summary

We haven't generated a summary for this paper yet.