Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

GMem: A Modular Approach for Ultra-Efficient Generative Models (2412.08781v2)

Published 11 Dec 2024 in cs.CV and cs.LG

Abstract: Recent studies indicate that the denoising process in deep generative diffusion models implicitly learns and memorizes semantic information from the data distribution. These findings suggest that capturing more complex data distributions requires larger neural networks, leading to a substantial increase in computational demands, which in turn become the primary bottleneck in both training and inference of diffusion models. To this end, we introduce GMem: A Modular Approach for Ultra-Efficient Generative Models. Our approach GMem decouples the memory capacity from model and implements it as a separate, immutable memory set that preserves the essential semantic information in the data. The results are significant: GMem enhances both training, sampling efficiency, and diversity generation. This design on one hand reduces the reliance on network for memorize complex data distribution and thus enhancing both training and sampling efficiency. On ImageNet at $256 \times 256$ resolution, GMem achieves a $50\times$ training speedup compared to SiT, reaching FID $=7.66$ in fewer than $28$ epochs ($\sim 4$ hours training time), while SiT requires $1400$ epochs. Without classifier-free guidance, GMem achieves state-of-the-art (SoTA) performance FID $=1.53$ in $160$ epochs with only $\sim 20$ hours of training, outperforming LightningDiT which requires $800$ epochs and $\sim 95$ hours to attain FID $=2.17$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

HackerNews

Reddit Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube