Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 85 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Kimi K2 186 tok/s Pro
2000 character limit reached

Assessing Driving Risk Through Unsupervised Detection of Anomalies in Telematics Time Series Data (2412.08106v2)

Published 11 Dec 2024 in stat.AP

Abstract: Vehicle telematics provides granular data for dynamic driving risk assessment, but current methods often rely on aggregated metrics (e.g., harsh braking counts) and do not fully exploit the rich time-series structure of telematics data. In this paper, we introduce a flexible framework using continuous-time hidden Markov model (CTHMM) to model and analyze trip-level telematics data. Unlike existing methods, the CTHMM models raw time-series data without predefined thresholds on harsh driving events or assumptions about accident probabilities. Moreover, our analysis is based solely on telematics data, requiring no traditional covariates such as driver or vehicle characteristics. Through unsupervised anomaly detection based on pseudo-residuals, we identify deviations from normal driving patterns -- defined as the prevalent behaviour observed in a driver's history or across the population -- which are linked to accident risk. Validated on both controlled and real-world datasets, the CTHMM effectively detects abnormal driving behaviour and trips with increased accident likelihood. In real data analysis, higher anomaly levels in longitudinal and lateral accelerations consistently correlate with greater accident risk, with classification models using this information achieving ROC-AUC values as high as 0.86 for trip-level analysis and 0.78 for distinguishing drivers with claims. Furthermore, the methodology reveals significant behavioural differences between drivers with and without claims, offering valuable insights for insurance applications, accident analysis, and prevention.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.