The quantum magic of fermionic Gaussian states (2412.05367v2)
Abstract: We introduce an efficient method to quantify nonstabilizerness in fermionic Gaussian states, overcoming the long-standing challenge posed by their extensive entanglement. Using a perfect sampling scheme based on an underlying determinantal point process, we compute the Stabilizer R\'enyi Entropies (SREs) for systems with hundreds of qubits. Benchmarking on random Gaussian states with and without particle conservation, we reveal an extensive leading behavior equal to that of Haar random states, with logarithmic subleading corrections. We support these findings with analytical calculations for a set of related quantities, the participation entropies in the computational (or Fock) basis, for which we derive an exact formula. We also investigate the time evolution of magic in a random unitary circuit with Gaussian gates, observing that it converges in a time that scales logarithmically with the system size. Applying the sampling algorithm to a two-dimensional free-fermionic topological model, we uncover a sharp transition in magic at the phase boundaries, highlighting the power of our approach in exploring different phases of quantum many-body systems, even in higher dimensions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.