Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 208 tok/s Pro
2000 character limit reached

Pre-train, Align, and Disentangle: Empowering Sequential Recommendation with Large Language Models (2412.04107v2)

Published 5 Dec 2024 in cs.IR and cs.AI

Abstract: Sequential Recommendation (SR) aims to leverage the sequential patterns in users' historical interactions to accurately track their preferences. However, the primary reliance of existing SR methods on collaborative data results in challenges such as the cold-start problem and sub-optimal performance. Concurrently, despite the proven effectiveness of LLMs, their integration into commercial recommender systems is impeded by issues such as high inference latency, incomplete capture of all distribution statistics, and catastrophic forgetting. To address these issues, we introduce a novel Pre-train, Align, and Disentangle (PAD) framework to enhance SR models with LLMs. In particular, we initially pre-train both the SR and LLM models to obtain collaborative and textual embeddings. Subsequently, we propose a characteristic recommendation-anchored alignment loss using multi-kernel maximum mean discrepancy with Gaussian kernels. Lastly, a triple-experts architecture, comprising aligned and modality-specific experts with disentangled embeddings, is fine-tuned in a frequency-aware manner. Experimental results on three public datasets validate the efficacy of PAD, indicating substantial enhancements and compatibility with various SR backbone models, particularly for cold items. The code and datasets are accessible for reproduction at https://github.com/Applied-Machine-Learning-Lab/PAD.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube