Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Memory-efficient Continual Learning with Neural Collapse Contrastive (2412.02865v3)

Published 3 Dec 2024 in cs.CV, cs.AI, and cs.LG

Abstract: Contrastive learning has significantly improved representation quality, enhancing knowledge transfer across tasks in continual learning (CL). However, catastrophic forgetting remains a key challenge, as contrastive based methods primarily focus on "soft relationships" or "softness" between samples, which shift with changing data distributions and lead to representation overlap across tasks. Recently, the newly identified Neural Collapse phenomenon has shown promise in CL by focusing on "hard relationships" or "hardness" between samples and fixed prototypes. However, this approach overlooks "softness", crucial for capturing intra-class variability, and this rigid focus can also pull old class representations toward current ones, increasing forgetting. Building on these insights, we propose Focal Neural Collapse Contrastive (FNC2), a novel representation learning loss that effectively balances both soft and hard relationships. Additionally, we introduce the Hardness-Softness Distillation (HSD) loss to progressively preserve the knowledge gained from these relationships across tasks. Our method outperforms state-of-the-art approaches, particularly in minimizing memory reliance. Remarkably, even without the use of memory, our approach rivals rehearsal-based methods, offering a compelling solution for data privacy concerns.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube