Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Integrative CAM: Adaptive Layer Fusion for Comprehensive Interpretation of CNNs (2412.01354v1)

Published 2 Dec 2024 in cs.CV and cs.AI

Abstract: With the growing demand for interpretable deep learning models, this paper introduces Integrative CAM, an advanced Class Activation Mapping (CAM) technique aimed at providing a holistic view of feature importance across Convolutional Neural Networks (CNNs). Traditional gradient-based CAM methods, such as Grad-CAM and Grad-CAM++, primarily use final layer activations to highlight regions of interest, often neglecting critical features derived from intermediate layers. Integrative CAM addresses this limitation by fusing insights across all network layers, leveraging both gradient and activation scores to adaptively weight layer contributions, thus yielding a comprehensive interpretation of the model's internal representation. Our approach includes a novel bias term in the saliency map calculation, a factor frequently omitted in existing CAM techniques, but essential for capturing a more complete feature importance landscape, as modern CNNs rely on both weighted activations and biases to make predictions. Additionally, we generalize the alpha term from Grad-CAM++ to apply to any smooth function, expanding CAM applicability across a wider range of models. Through extensive experiments on diverse and complex datasets, Integrative CAM demonstrates superior fidelity in feature importance mapping, effectively enhancing interpretability for intricate fusion scenarios and complex decision-making tasks. By advancing interpretability methods to capture multi-layered model insights, Integrative CAM provides a valuable tool for fusion-driven applications, promoting the trustworthy and insightful deployment of deep learning models.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube