Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 110 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Harnessing Large Language Models for Seed Generation in Greybox Fuzzing (2411.18143v1)

Published 27 Nov 2024 in cs.CR and cs.SE

Abstract: Greybox fuzzing has emerged as a preferred technique for discovering software bugs, striking a balance between efficiency and depth of exploration. While research has focused on improving fuzzing techniques, the importance of high-quality initial seeds remains critical yet often overlooked. Existing methods for seed generation are limited, especially for programs with non-standard or custom input formats. LLMs has revolutionized numerous domains, showcasing unprecedented capabilities in understanding and generating complex patterns across various fields of knowledge. This paper introduces SeedMind, a novel system that leverages LLMs to boost greybox fuzzing through intelligent seed generation. Unlike previous approaches, SeedMind employs LLMs to create test case generators rather than directly producing test cases. Our approach implements an iterative, feedback-driven process that guides the LLM to progressively refine test case generation, aiming for increased code coverage depth and breadth. In developing SeedMind, we addressed key challenges including input format limitations, context window constraints, and ensuring consistent, progress-aware behavior. Intensive evaluations with real-world applications show that SeedMind effectively harnesses LLMs to generate high-quality test cases and facilitate fuzzing in bug finding, presenting utility comparable to human-created seeds and significantly outperforming the existing LLM-based solutions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube