Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Radio Halo Detection in MWA Data using Deep Neural Networks and Generative Data Augmentation (2411.15559v1)

Published 23 Nov 2024 in astro-ph.GA

Abstract: Detecting diffuse radio emission, such as from halos, in galaxy clusters is crucial for understanding large-scale structure formation in the universe. Traditional methods, which rely on X-ray and Sunyaev-Zeldovich (SZ) cluster pre-selection, introduce biases that limit our understanding of the full population of diffuse radio sources. In this work, we provide a possible resolution for this astrophysical tension by developing a ML framework capable of unbiased detection of diffuse emission, using a limited real dataset like those from the Murchison Widefield Array (MWA). We generate for the first time radio halo images using Wasserstein Generative Adversarial Networks (WGANs) and Denoising Diffusion Probabilistic Models (DDPMs), and apply them to train a neural network classifier independent of pre-selection methods. The halo images generated by DDPMs are of higher quality than those produced by WGANs. The diffusion-supported classifier with a multi-head attention block achieved the best average validation accuracy of 95.93% over 10 runs, using 36 clusters for training and 10 for testing, without further hyperparameter tuning. Using our classifier, we rediscovered 9/12 halos (75% detection rate) from the MeerKAT Galaxy Cluster Legacy Survey (MGCLS) Catalogue, and 5/8 halos (63% detection rate) from the Planck Sunyaev-Zeldovich Catalogue 2 (PSZ2) within the GaLactic and Extragalactic All-sky MWA (GLEAM) survey. In addition, we identify 11 potential new halos, minihalos, or candidates in the COSMOS field using XMM-chandra-detected clusters in GLEAM data. This work demonstrates the potential of ML for unbiased detection of diffuse emission and provides labeled datasets for further study.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com