Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An unconditional distribution learning advantage with shallow quantum circuits (2411.15548v2)

Published 23 Nov 2024 in quant-ph and cs.AI

Abstract: One of the core challenges of research in quantum computing is concerned with the question whether quantum advantages can be found for near-term quantum circuits that have implications for practical applications. Motivated by this mindset, in this work, we prove an unconditional quantum advantage in the probably approximately correct (PAC) distribution learning framework with shallow quantum circuit hypotheses. We identify a meaningful generative distribution learning problem where constant-depth quantum circuits using one and two qubit gates (QNC0) are superior compared to constant-depth bounded fan-in classical circuits (NC0) as a choice for hypothesis classes. We hence prove a PAC distribution learning separation for shallow quantum circuits over shallow classical circuits. We do so by building on recent results by Bene Watts and Parham on unconditional quantum advantages for sampling tasks with shallow circuits, which we technically uplift to a hyperplane learning problem, identifying non-local correlations as the origin of the quantum advantage.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube