Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Unsupervised Machine Learning for Osteoporosis Diagnosis Using Singh Index Clustering on Hip Radiographs (2411.15253v1)

Published 22 Nov 2024 in eess.IV, cs.CV, and cs.LG

Abstract: Osteoporosis, a prevalent condition among the aging population worldwide, is characterized by diminished bone mass and altered bone structure, increasing susceptibility to fractures. It poses a significant and growing global public health challenge over the next decade. Diagnosis typically involves Dual-energy X-ray absorptiometry to measure bone mineral density, yet its mass screening utility is limited. The Singh Index (SI) provides a straightforward, semi-quantitative means of osteoporosis diagnosis through plain hip radiographs, assessing trabecular patterns in the proximal femur. Although cost-effective and accessible, manual SI calculation is time-intensive and requires expertise. This study aims to automate SI identification from radiographs using machine learning algorithms. An unlabelled dataset of 838 hip X-ray images from Indian adults aged 20-70 was utilized. A custom convolutional neural network architecture was developed for feature extraction, demonstrating superior performance in cluster homogeneity and heterogeneity compared to established models. Various clustering algorithms categorized images into six SI grade clusters, with comparative analysis revealing only two clusters with high Silhouette Scores for promising classification. Further scrutiny highlighted dataset imbalance and emphasized the importance of image quality and additional clinical data availability. The study suggests augmenting X-ray images with patient clinical data and reference images, alongside image pre-processing techniques, to enhance diagnostic accuracy. Additionally, exploring semi-supervised and self-supervised learning methods may mitigate labelling challenges associated with large datasets.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube