Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On Mean Field Games in Infinite Dimension (2411.14604v2)

Published 21 Nov 2024 in math.AP and math.OC

Abstract: We study a Mean Field Games (MFG) system in a real, separable infinite dimensional Hilbert space. The system consists of a second order parabolic type equation, called Hamilton-Jacobi-BeLLMan (HJB) equation in the paper, coupled with a nonlinear Fokker-Planck (FP) equation. Both equations contain a Kolmogorov operator. Solutions to the HJB equation are interpreted in the mild solution sense and solutions to the FP equation are interpreted in an appropriate weak sense. We prove well-posedness of the considered MFG system under certain conditions. The existence of a solution to the MFG system is proved using Tikhonov's fixed point theorem in a proper space. Uniqueness of solutions is obtained under typical separability and Lasry-Lions type monotonicity conditions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube