Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 163 tok/s Pro
2000 character limit reached

Analysis of Hardware Synthesis Strategies for Machine Learning in Collider Trigger and Data Acquisition (2411.11678v1)

Published 18 Nov 2024 in physics.ins-det, cs.AR, cs.LG, and hep-ex

Abstract: To fully exploit the physics potential of current and future high energy particle colliders, ML can be implemented in detector electronics for intelligent data processing and acquisition. The implementation of ML in real-time at colliders requires very low latencies that are unachievable with a software-based approach, requiring optimization and synthesis of ML algorithms for deployment on hardware. An analysis of neural network inference efficiency is presented, focusing on the application of collider trigger algorithms in field programmable gate arrays (FPGAs). Trade-offs are evaluated between two frameworks, the SLAC Neural Network Library (SNL) and hls4ml, in terms of resources and latency for different model sizes. Results highlight the strengths and limitations of each approach, offering valuable insights for optimizing real-time neural network deployments at colliders. This work aims to guide researchers and engineers in selecting the most suitable hardware and software configurations for real-time, resource-constrained environments.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com