Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Riemannian optimisation methods for ground states of multicomponent Bose-Einstein condensates (2411.09617v2)

Published 14 Nov 2024 in math.NA and cs.NA

Abstract: This paper addresses the computation of ground states of multicomponent Bose-Einstein condensates, defined as the global minimiser of an energy functional on an infinite-dimensional generalised oblique manifold. We establish the existence of the ground state, prove its uniqueness up to scaling, and characterise it as the solution to a coupled nonlinear eigenvector problem. By equipping the manifold with several Riemannian metrics, we introduce a suite of Riemannian gradient descent and Riemannian Newton methods. Metrics that incorporate first- or second-order information about the energy are particularly advantageous, effectively preconditioning the resulting methods. For a Riemannian gradient descent method with an energy-adaptive metric, we provide a qualitative global and quantitative local convergence analysis, confirming its reliability and robustness with respect to the choice of the spatial discretisation. Numerical experiments highlight the computational efficiency of both the Riemannian gradient descent and Newton methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.