Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Phase Transitions via Complex Extensions of Markov Chains (2411.06857v2)

Published 11 Nov 2024 in cs.DS, cs.DM, and math.PR

Abstract: We study algebraic properties of partition functions, particularly the location of zeros, through the lens of rapidly mixing Markov chains. The classical Lee-Yang program initiated the study of phase transitions via locating complex zeros of partition functions. Markov chains, besides serving as algorithms, have also been used to model physical processes tending to equilibrium. In many scenarios, rapid mixing of Markov chains coincides with the absence of phase transitions (complex zeros). Prior works have shown that the absence of phase transitions implies rapid mixing of Markov chains. We reveal a converse connection by lifting probabilistic tools for the analysis of Markov chains to study complex zeros of partition functions. Our motivating example is the independence polynomial on $k$-uniform hypergraphs, where the best-known zero-free regime has been significantly lagging behind the regime where we have rapidly mixing Markov chains for the underlying hypergraph independent sets. Specifically, the Glauber dynamics is known to mix rapidly on independent sets in a $k$-uniform hypergraph of maximum degree $\Delta$ provided that $\Delta \lesssim 2{k/2}$. On the other hand, the best-known zero-freeness around the point $1$ of the independence polynomial on $k$-uniform hypergraphs requires $\Delta \le 5$, the same bound as on a graph. By introducing a complex extension of Markov chains, we lift an existing percolation argument to the complex plane, and show that if $\Delta \lesssim 2{k/2}$, the Markov chain converges in a complex neighborhood, and the independence polynomial itself does not vanish in the same neighborhood. In the same regime, our result also implies central limit theorems for the size of a uniformly random independent set, and deterministic approximation algorithms for the number of hypergraph independent sets of size $k \le \alpha n$ for some constant $\alpha$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.