Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 29 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

End-to-End Navigation with Vision Language Models: Transforming Spatial Reasoning into Question-Answering (2411.05755v1)

Published 8 Nov 2024 in cs.RO, cs.CL, and cs.CV

Abstract: We present VLMnav, an embodied framework to transform a Vision-LLM (VLM) into an end-to-end navigation policy. In contrast to prior work, we do not rely on a separation between perception, planning, and control; instead, we use a VLM to directly select actions in one step. Surprisingly, we find that a VLM can be used as an end-to-end policy zero-shot, i.e., without any fine-tuning or exposure to navigation data. This makes our approach open-ended and generalizable to any downstream navigation task. We run an extensive study to evaluate the performance of our approach in comparison to baseline prompting methods. In addition, we perform a design analysis to understand the most impactful design decisions. Visual examples and code for our project can be found at https://jirl-upenn.github.io/VLMnav/

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com