Numerical investigation of quantum phases and phase transitions in a two-leg ladder of Rydberg atoms (2411.05494v2)
Abstract: Experiments on chains of Rydberg atoms appear as a new playground to study quantum phase transitions in 1D. As a natural extension, we report a quantitative ground-state phase diagram of Rydberg atoms arranged in a two-leg ladder that interact via van der Waals potential. We address this problem numerically, using the Density Matrix Renormalization Group (DMRG) algorithm. Our results suggest that, surprisingly enough, $\mathbb{Z}_k$ crystalline phases, with the exception of the checkerboard phase, appear in pairs characterized by the same pattern of occupied rungs but distinguishable by a spontaneously broken $\tilde{\mathbb{Z}}_2$ symmetry between the two legs of the ladder. Within each pair, the two phases are separated by a continuous transition in the Ising universality class, which eventually fuses with the $\mathbb{Z}_k$ transition, whose nature depends on $k$. According to our results, the transition into the $\mathbb{Z}_2\otimes \tilde{\mathbb{Z}}_2$ phase changes its nature multiple of times and, over extended intervals, falls first into the Ashkin-Teller, latter into the $\mathbb{Z}_4$-chiral universality class and finally in a two step-process mediated by a floating phase. The transition into the $\mathbb{Z}_3$ phase with resonant states on the rungs belongs to the three-state Potts universality class at the commensurate point, to the $\mathbb{Z}_3$-chiral Huse-Fisher universality class away from it, and eventually it is through an intermediate floating phase. The Ising transition between $\mathbb{Z}_3$ and $\mathbb{Z}_3\otimes \tilde{\mathbb{Z}}_2$ phases, coming across the floating phase, opens the possibility to realize lattice supersymmetry in Rydberg quantum simulators.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.