Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Koopman-based control using sum-of-squares optimization: Improved stability guarantees and data efficiency (2411.03875v1)

Published 6 Nov 2024 in eess.SY, cs.SY, and math.OC

Abstract: In this paper, we propose a novel controller design approach for unknown nonlinear systems using the Koopman operator. In particular, we use the recently proposed stability- and certificate-oriented extended dynamic mode decomposition (SafEDMD) architecture to generate a data-driven bilinear surrogate model with certified error bounds. Then, by accounting for the obtained error bounds in a controller design based on the bilinear system, one can guarantee closed-loop stability for the true nonlinear system. While existing approaches over-approximate the bilinearity of the surrogate model, thus introducing conservatism and providing only local guarantees, we explicitly account for the bilinearity by using sum-of-squares (SOS) optimization in the controller design. More precisely, we parametrize a rational controller stabilizing the error-affected bilinear surrogate model and, consequently, the underlying nonlinear system. The resulting SOS optimization problem provides explicit data-driven controller design conditions for unknown nonlinear systems based on semidefinite programming. Our approach significantly reduces conservatism by establishing a larger region of attraction and improved data efficiency. The proposed method is evaluated using numerical examples, demonstrating its advantages over existing approaches.

Summary

We haven't generated a summary for this paper yet.