Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust data-driven control for nonlinear systems using the Koopman operator (2304.03519v2)

Published 7 Apr 2023 in eess.SY, cs.SY, and math.OC

Abstract: Data-driven analysis and control of dynamical systems have gained a lot of interest in recent years. While the class of linear systems is well studied, theoretical results for nonlinear systems are still rare. In this paper, we present a data-driven controller design method for discrete-time control-affine nonlinear systems. Our approach relies on the Koopman operator, which is a linear but infinite-dimensional operator lifting the nonlinear system to a higher-dimensional space. Particularly, we derive a linear fractional representation of a lifted bilinear system representation based on measured data. Further, we restrict the lifting to finite dimensions, but account for the truncation error using a finite-gain argument. We derive a linear matrix inequality based design procedure to guarantee robust local stability for the resulting bilinear system for all error terms satisfying the finite-gain bound and, thus, also for the underlying nonlinear system. Finally, we apply the developed design method to the nonlinear Van der Pol oscillator.

Citations (17)

Summary

We haven't generated a summary for this paper yet.