Non-parametric Inference for Diffusion Processes: A Computational Approach via Bayesian Inversion for PDEs (2411.02324v1)
Abstract: In this paper, we present a theoretical and computational workflow for the non-parametric Bayesian inference of drift and diffusion functions of autonomous diffusion processes. We base the inference on the partial differential equations arising from the infinitesimal generator of the underlying process. Following a problem formulation in the infinite-dimensional setting, we discuss optimization- and sampling-based solution methods. As preliminary results, we showcase the inference of a single-scale, as well as a multiscale process from trajectory data.
- Journal of Computational Physics 335, 327–351 (2017)
- Society for Industrial and Applied Mathematics (2011)
- In: 2012 International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–11. IEEE, Salt Lake City, UT (2012)
- SIAM Journal on Scientific Computing 35(6), A2494–A2523 (2013). Publisher: Society for Industrial and Applied Mathematics
- Statistical Science 28(3) (2013)
- WIREs Computational Statistics 15(2) (2023)
- Crommelin, D.: Estimation of Space-Dependent Diffusions and Potential Landscapes from Non-equilibrium Data. Journal of Statistical Physics 149(2), 220–233 (2012)
- Inverse Problems and Imaging 12(5), 1083–1102 (2018). Publisher: Inverse Problems and Imaging
- Chaos: An Interdisciplinary Journal of Nonlinear Science 33(2) (2023)
- Springer series in synergetics. Springer-Verlag, Berlin ; New York (2004)
- Springer International Publishing, Cham (2017)
- Acta Numerica 30, 445–554 (2021)
- Gunzburger, M.D.: Perspectives in flow control and optimization. Advances in design and control. Society for Industrial and Applied Mathematics, Philadelphia, PA (2003)
- SIAM Review 53(2), 217–288 (2011)
- No. 23 in Mathematical modelling: theory and applications. Springer, New York (2009)
- ACM Transactions on Mathematical Software (2023)
- Journal of Chemical Theory and Computation 14(12), 6127–6138 (2018). Publisher: American Chemical Society
- Wiley Series in Probability and Statistics. Wiley (2011)
- Multiscale Modeling & Simulation 11(2), 442–473 (2013). Publisher: Society for Industrial and Applied Mathematics
- Physical Review E 92(4) (2015)
- Spatial Statistics 50 (2022)
- Journal of the Royal Statistical Society Series B: Statistical Methodology 73(4), 423–498 (2011)
- Acta Numerica 29, 403–572 (2020). Publisher: Cambridge University Press
- Springer series in operations research. Springer, New York (2006)
- Biometrika 99(3), 511–531 (2012)
- Journal of Open Source Software 6(68), 3076 (2021)
- Springer New York, New York, NY (2014)
- Tech. rep., Defense Technical Information Center, Fort Belvoir, VA (2011)
- Silverman, B.W.: Density estimation for statistics and data analysis. No. 26 in Monographs on statistics and applied probability. Chapman & Hall, London (1992)
- Stuart, A.M.: Inverse problems: A Bayesian perspective. Acta Numerica 19, 451–559 (2010). Publisher: Cambridge University Press
- Springer International Publishing, Cham (2015)
- Tierney, L.: A note on Metropolis-Hastings kernels for general state spaces. The Annals of Applied Probability 8(1) (1998)
- No. v. 112 in Graduate studies in mathematics. American Mathematical Society, Providence, R.I (2010)
- Tsybakov, A.B.: Introduction to nonparametric estimation. Springer series in statistics. Springer, New York ; London (2009)
- Computational Statistics & Data Analysis 71, 615–632 (2014)
- ACM Transactions on Mathematical Software 47(2), 16:1–16:34 (2021)
- ACM Comput. Surv. 56(4), 1–39 (2024)
- Elsevier, Amsterdam Heidelberg (2010)
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.