Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Unlocking "imprints" of conserved charges in the initial state of heavy-ion collisions (2411.00590v1)

Published 1 Nov 2024 in nucl-th, hep-ph, and nucl-ex

Abstract: Hydrodynamic approaches to modeling relativistic high-energy heavy-ion collisions are based on the conservation of energy and momentum. However, the medium formed in these collisions also carries additional conserved quantities, including baryon number (B), strangeness (S), and electric charge (Q). In this Letter, we propose a new set of anisotropic flow observables designed to be exclusively sensitive to the effects of conserved BSQ charge fluctuations, providing insight into the initial state. Using the recently developed hydrodynamic framework \iccing{}+\ccake{}, we show that these new observables provide a measurable effect of initial BSQ charge fluctuations (ranging up to $\sim $10\%), which can be tested by experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. U. W. Heinz, ’RHIC serves the perfect fluid’: Hydrodynamic flow of the QGP, in Workshop on Extreme QCD (2005) pp. 3–12, arXiv:nucl-th/0512051 .
  2. J. S. Moreland, J. E. Bernhard, and S. A. Bass, Bayesian calibration of a hybrid nuclear collision model using p-Pb and Pb-Pb data at energies available at the CERN Large Hadron Collider, Phys. Rev. C 101, 024911 (2020), arXiv:1808.02106 [nucl-th] .
  3. J. E. Bernhard, J. S. Moreland, and S. A. Bass, Bayesian estimation of the specific shear and bulk viscosity of quark–gluon plasma, Nature Phys. 15, 1113 (2019).
  4. D. Everett et al. (JETSCAPE), Multisystem Bayesian constraints on the transport coefficients of QCD matter, Phys. Rev. C 103, 054904 (2021), arXiv:2011.01430 [hep-ph] .
  5. J. L. Nagle and W. A. Zajc, Small System Collectivity in Relativistic Hadronic and Nuclear Collisions, Ann. Rev. Nucl. Part. Sci. 68, 211 (2018), arXiv:1801.03477 [nucl-ex] .
  6. Y. Kanakubo, Unified description of high-energy nuclear collisions based on dynamical core–corona picture, Ph.D. thesis, Sophia U. (2022), arXiv:2208.07029 [nucl-th] .
  7. F. G. Gardim, R. Krupczak, and T. N. da Silva, Smallest drop of QGP: Thermodynamic properties of p-Pb collisions, Phys. Rev. C 109, 014904 (2024), arXiv:2212.11710 [nucl-th] .
  8. F. Becattini and M. A. Lisa, Polarization and Vorticity in the Quark–Gluon Plasma, Ann. Rev. Nucl. Part. Sci. 70, 395 (2020), arXiv:2003.03640 [nucl-ex] .
  9. D. E. Kharzeev, J. Liao, and P. Tribedy, Chiral Magnetic Effect in Heavy Ion Collisions: The Present and Future,   (2024), arXiv:2405.05427 [nucl-th] .
  10. Y. Tachibana, N.-B. Chang, and G.-Y. Qin, Full jet in quark-gluon plasma with hydrodynamic medium response, Phys. Rev. C 95, 044909 (2017), arXiv:1701.07951 [nucl-th] .
  11. X. An et al., The BEST framework for the search for the QCD critical point and the chiral magnetic effect, Nucl. Phys. A 1017, 122343 (2022), arXiv:2108.13867 [nucl-th] .
  12. I. Karpenko, P. Huovinen, and M. Bleicher, A 3+1 dimensional viscous hydrodynamic code for relativistic heavy ion collisions, Comput. Phys. Commun. 185, 3016 (2014), arXiv:1312.4160 [nucl-th] .
  13. L. Du and U. Heinz, (3+1)-dimensional dissipative relativistic fluid dynamics at non-zero net baryon density, Comput. Phys. Commun. 251, 107090 (2020), arXiv:1906.11181 [nucl-th] .
  14. C. Plumberg et al., BSQ Conserved Charges in Relativistic Viscous Hydrodynamics solved with Smoothed Particle Hydrodynamics,   (2024), arXiv:2405.09648 [nucl-th] .
  15. O. Garcia-Montero, H. Elfner, and S. Schlichting, McDIPPER: A novel saturation-based 3+1D initial-state model for heavy ion collisions, Phys. Rev. C 109, 044916 (2024), arXiv:2308.11713 [hep-ph] .
  16. B. Schenke and R. Venugopalan, Eccentric protons? Sensitivity of flow to system size and shape in p+p, p+Pb and Pb+Pb collisions, Phys. Rev. Lett. 113, 102301 (2014), arXiv:1405.3605 [nucl-th] .
  17. J. Noronha-Hostler, J. Noronha, and M. Gyulassy, Sensitivity of flow harmonics to subnucleon scale fluctuations in heavy ion collisions, Phys. Rev. C 93, 024909 (2016), arXiv:1508.02455 [nucl-th] .
  18. A. Mazeliauskas and D. Teaney, Subleading harmonic flows in hydrodynamic simulations of heavy ion collisions, Phys. Rev. C 91, 044902 (2015), arXiv:1501.03138 [nucl-th] .
  19. M. Martinez, M. D. Sievert, and D. E. Wertepny, Toward Initial Conditions of Conserved Charges Part I: Spatial Correlations of Quarks and Antiquarks, JHEP 07, 003, arXiv:1801.08986 [hep-ph] .
  20. J. S. Moreland, J. E. Bernhard, and S. A. Bass, Alternative ansatz to wounded nucleon and binary collision scaling in high-energy nuclear collisions, Phys. Rev. C 92, 011901 (2015), arXiv:1412.4708 [nucl-th] .
  21. P. Alba et al., Constraining the hadronic spectrum through QCD thermodynamics on the lattice, Phys. Rev. D 96, 034517 (2017), arXiv:1702.01113 [hep-lat] .
  22. J. Sollfrank, P. Koch, and U. W. Heinz, The Influence of resonance decays on the P(t) spectra from heavy ion collisions, Phys. Lett. B 252, 256 (1990).
  23. S. Acharya et al. (ALICE), Anisotropic flow of identified particles in Pb-Pb collisions at sNN=5.02subscript𝑠NN5.02{\sqrt{s}}_{\mathrm{NN}}=5.02square-root start_ARG italic_s end_ARG start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT = 5.02 TeV, JHEP 09, 006, arXiv:1805.04390 [nucl-ex] .
  24. N. Borghini, P. M. Dinh, and J.-Y. Ollitrault, Flow analysis from multiparticle azimuthal correlations, Phys. Rev. C 64, 054901 (2001a), arXiv:nucl-th/0105040 .
  25. N. Borghini, P. M. Dinh, and J.-Y. Ollitrault, A New method for measuring azimuthal distributions in nucleus-nucleus collisions, Phys. Rev. C 63, 054906 (2001b), arXiv:nucl-th/0007063 .
  26. A. Bilandzic, R. Snellings, and S. Voloshin, Flow analysis with cumulants: Direct calculations, Phys. Rev. C 83, 044913 (2011), arXiv:1010.0233 [nucl-ex] .
  27. Z. Moravcova, K. Gulbrandsen, and Y. Zhou, Generic algorithm for multiparticle cumulants of azimuthal correlations in high energy nucleus collisions, Phys. Rev. C 103, 024913 (2021), arXiv:2005.07974 [nucl-th] .
  28. A. M. Sirunyan et al. (CMS), Azimuthal anisotropy of charged particles with transverse momentum up to 100 GeV/ c in PbPb collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s}_{{NN}}square-root start_ARG italic_s end_ARG start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT=5.02 TeV, Phys. Lett. B 776, 195 (2018a), arXiv:1702.00630 [hep-ex] .
  29. A. Tumasyan et al. (CMS), Probing Charm Quark Dynamics via Multiparticle Correlations in Pb-Pb Collisions at sNNsubscript𝑠NN\sqrt{s_{\mathrm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG =5.02 TeV, Phys. Rev. Lett. 129, 022001 (2022), arXiv:2112.12236 [hep-ex] .
  30. S. Acharya et al. (ALICE), Observation of flow angle and flow magnitude fluctuations in Pb-Pb collisions at sNN=5.02TeV at the CERN Large Hadron Collider, Phys. Rev. C 107, L051901 (2023a), arXiv:2206.04574 [nucl-ex] .
  31. S. Acharya et al. (ALICE), Anisotropic flow and flow fluctuations of identified hadrons in Pb–Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\textrm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV, JHEP 05, 243, arXiv:2206.04587 [nucl-ex] .
  32. G. Aad et al. (ATLAS), Measurement of the correlation between flow harmonics of different order in lead-lead collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG=2.76 TeV with the ATLAS detector, Phys. Rev. C 92, 034903 (2015), arXiv:1504.01289 [hep-ex] .
  33. S. Acharya et al. (ALICE), Event-shape engineering for the D-meson elliptic flow in mid-central Pb-Pb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\rm NN}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV, JHEP 02, 150, arXiv:1809.09371 [nucl-ex] .
  34. D. Teaney and L. Yan, Triangularity and Dipole Asymmetry in Heavy Ion Collisions, Phys. Rev. C 83, 064904 (2011), arXiv:1010.1876 [nucl-th] .
  35. Z. Qiu and U. W. Heinz, Event-by-event shape and flow fluctuations of relativistic heavy-ion collision fireballs, Phys. Rev. C 84, 024911 (2011), arXiv:1104.0650 [nucl-th] .
  36. K. Fukushima, D. E. Kharzeev, and H. J. Warringa, The Chiral Magnetic Effect, Phys. Rev. D 78, 074033 (2008), arXiv:0808.3382 [hep-ph] .
  37. S. Acharya et al. (ALICE), Constraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb-Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\mathrm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV, Phys. Lett. B 777, 151 (2018b), arXiv:1709.04723 [nucl-ex] .
  38. A. M. Sirunyan et al. (CMS), Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in p⁢Pb𝑝Pbp\mathrm{Pb}italic_p roman_Pb and PbPb collisions at the CERN Large Hadron Collider, Phys. Rev. C 97, 044912 (2018b), arXiv:1708.01602 [nucl-ex] .
  39. M. Abdallah et al. (STAR), Search for the chiral magnetic effect with isobar collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG=200 GeV by the STAR Collaboration at the BNL Relativistic Heavy Ion Collider, Phys. Rev. C 105, 014901 (2022), arXiv:2109.00131 [nucl-ex] .
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube