Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

LAM-YOLO: Drones-based Small Object Detection on Lighting-Occlusion Attention Mechanism YOLO (2411.00485v1)

Published 1 Nov 2024 in cs.CV

Abstract: Drone-based target detection presents inherent challenges, such as the high density and overlap of targets in drone-based images, as well as the blurriness of targets under varying lighting conditions, which complicates identification. Traditional methods often struggle to recognize numerous densely packed small targets under complex background. To address these challenges, we propose LAM-YOLO, an object detection model specifically designed for drone-based. First, we introduce a light-occlusion attention mechanism to enhance the visibility of small targets under different lighting conditions. Meanwhile, we incroporate incorporate Involution modules to improve interaction among feature layers. Second, we utilize an improved SIB-IoU as the regression loss function to accelerate model convergence and enhance localization accuracy. Finally, we implement a novel detection strategy that introduces two auxiliary detection heads for identifying smaller-scale targets.Our quantitative results demonstrate that LAM-YOLO outperforms methods such as Faster R-CNN, YOLOv9, and YOLOv10 in terms of [email protected] and [email protected]:0.95 on the VisDrone2019 public dataset. Compared to the original YOLOv8, the average precision increases by 7.1\%. Additionally, the proposed SIB-IoU loss function shows improved faster convergence speed during training and improved average precision over the traditional loss function.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube