Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dense Associative Memory Through the Lens of Random Features (2410.24153v1)

Published 31 Oct 2024 in cs.LG

Abstract: Dense Associative Memories are high storage capacity variants of the Hopfield networks that are capable of storing a large number of memory patterns in the weights of the network of a given size. Their common formulations typically require storing each pattern in a separate set of synaptic weights, which leads to the increase of the number of synaptic weights when new patterns are introduced. In this work we propose an alternative formulation of this class of models using random features, commonly used in kernel methods. In this formulation the number of network's parameters remains fixed. At the same time, new memories can be added to the network by modifying existing weights. We show that this novel network closely approximates the energy function and dynamics of conventional Dense Associative Memories and shares their desirable computational properties.

Summary

  • The paper introduces DrDAM, a novel method utilizing random features to create efficient and scalable Dense Associative Memory networks without increasing network parameters.
  • The research employs techniques from kernel methods and random projections to approximate energy functions, allowing memory storage within a fixed parameter count.
  • Empirical results validate DrDAM's effectiveness, demonstrating comparable memory retrieval to traditional methods while highlighting the importance of feature dimension and parameters like inverse temperature for accuracy.

Dense Associative Memory Through the Lens of Random Features

The paper presents novel work leveraging random features for the construction of Dense Associative Memory (DenseAM) networks, focusing on maintaining computational efficiency and scalability in memory augmentation. The paper revisits traditional Hopfield networks with enhanced storage capabilities derived from introducing non-linear activation functions that enable super-linear and exponential growth in memory capacity.

Key Contributions

  1. Approximate Distributed Memory Representation: The work introduces a new method employing random features to approximate DenseAM networks, bypassing the need for storing original memory patterns and integrating new memory data without increasing network parameter counts.
  2. Characterization and Empirical Validation: The authors elucidate the variances introduced in energy descent dynamics when adopting the new architecture. They supplement theoretical assertions with empirical data, demonstrating the validity of their proposed approximation.
  3. Efficiency in Memory Handling: Drawing upon techniques from kernel methods, specifically the random feature approach, the authors offer a mechanism that enables memory storage within a fixed parameter count, resetting the necessity for additional weight introduction upon memory expansion.

Theoretical Insights

The researchers tackle the foundational mathematical structures of memory networks by considering energy functions expressed in non-linear separable forms. They investigate these functions through the lens of kernel tricks common in support vector machines, allowing the reformulation of memory representations into a feature space characterized by a robust kernel.

This approach facilitates the use of random projections, which approximate these energy functions in high-dimensional spaces without explicit representation thereof. Such a transformation ensures memory patterns' inclusion in existing network weights, reducing complexity and parameter inflation typically associated with increasing memory loads.

Theoretical bounds are set, investigating the divergence of behavior from traditional methods when using the proposed approach. Critical factors affecting divergence include initial energy states, model parameters like inverse temperature, random feature counts, and memory dimensionality.

Empirical Findings

Empirical results affirm the proposed DrDAM's efficacy in approximating the dynamics and stored patterns of traditional MrDAM networks. A pivotal reliance on the number of feature dimensions (Y) becomes evident, with larger values better ensuring lower error margins in representing stored memories.

The approximation accuracy is notably affected by parameters such as inverse temperature (β) and memory dimension (D), where higher parameters exacerbate divergence with large errors in random contexts leaning towards random values.

The compression capability of the proposed distributed system demonstrates effective storage amidst significant dimensional reductions, showing retrieval capabilities comparable to existing heavy parameter solutions but with constrained resource utilization.

Implications and Future Research

The implications of this paper primarily lie in the scalability of associative memory systems without sacrificing efficiency or fidelity. The paper suggests prospects for deploying such distributed architectures in hierarchical memory networks where cognitive biases like convolutional operations or multi-layer formulations harness additional complexity.

Future research avenues may profitably explore varying hierarchical structures, refining step-sizing, or integrating non-uniform feature map depths to optimize retrieval processes and energy convergence rates further. Investigations into adaptable networks where memory retention quality can dynamically adjust based on predictive outcomes could foster further advancements.

The paper reinforces the narrative of using random feature spaces beyond linear kernel approximations, providing transformative insight into dense associative memory networks’ resource-efficient and scalable design spaces.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com