Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchical Associative Memory (2107.06446v1)

Published 14 Jul 2021 in cs.NE, cond-mat.dis-nn, cs.LG, q-bio.NC, and stat.ML

Abstract: Dense Associative Memories or Modern Hopfield Networks have many appealing properties of associative memory. They can do pattern completion, store a large number of memories, and can be described using a recurrent neural network with a degree of biological plausibility and rich feedback between the neurons. At the same time, up until now all the models of this class have had only one hidden layer, and have only been formulated with densely connected network architectures, two aspects that hinder their machine learning applications. This paper tackles this gap and describes a fully recurrent model of associative memory with an arbitrary large number of layers, some of which can be locally connected (convolutional), and a corresponding energy function that decreases on the dynamical trajectory of the neurons' activations. The memories of the full network are dynamically "assembled" using primitives encoded in the synaptic weights of the lower layers, with the "assembling rules" encoded in the synaptic weights of the higher layers. In addition to the bottom-up propagation of information, typical of commonly used feedforward neural networks, the model described has rich top-down feedback from higher layers that help the lower-layer neurons to decide on their response to the input stimuli.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Dmitry Krotov (28 papers)
Citations (25)

Summary

We haven't generated a summary for this paper yet.