Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Detrimental non-Markovian errors for surface code memory (2410.23779v2)

Published 31 Oct 2024 in quant-ph

Abstract: The realization of fault-tolerant quantum computers hinges on effective quantum error correction protocols, whose performance significantly relies on the nature of the underlying noise. In this work, we directly study the structure of non-Markovian correlated errors and their impact on surface code memory performance. Specifically, we compare surface code performance under non-Markovian noise and independent circuit-level noise, while keeping marginal error rates constant. Our analysis shows that while not all temporally correlated structures are detrimental, certain structures, particularly multi-time "streaky" correlations affecting syndrome qubits and two-qubit gates, can severely degrade logical error rate scaling. Furthermore, we discuss our results in the context of recent quantum error correction experiments on physical devices. These findings underscore the importance of understanding and mitigating non-Markovian noise toward achieving practical, fault-tolerant quantum computing.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. P. W. Shor, Fault-tolerant quantum computation, in Proceedings of 37th Conference on Foundations of Computer Science (1996) pp. 56–65, journal Abbreviation: Proceedings of 37th Conference on Foundations of Computer Science.
  2. E. Knill, R. Laflamme, and W. H. Zurek, Resilient Quantum Computation, Science 279, 342 (1998), publisher: American Association for the Advancement of Science.
  3. A. G. Fowler and J. M. Martinis, Quantifying the effects of local many-qubit errors and nonlocal two-qubit errors on the surface code, Physical Review A 89, 032316 (2014), publisher: American Physical Society.
  4. R. Acharya et al., Suppressing quantum errors by scaling a surface code logical qubit, Nature 614, 676 (2023).
  5. D. Bluvstein et al., Logical quantum processor based on reconfigurable atom arrays, Nature 626, 58 (2024).
  6. R. Acharya et al., Quantum error correction below the surface code threshold (2024), arXiv:2408.13687 [quant-ph] .
  7. D. K. Tuckett, S. D. Bartlett, and S. T. Flammia, Ultrahigh Error Threshold for Surface Codes with Biased Noise, Physical Review Letters 120, 050505 (2018), publisher: American Physical Society.
  8. D. Greenbaum and Z. Dutton, Modeling coherent errors in quantum error correction, Quantum Science and Technology 3, 015007 (2017), publisher: IOP Publishing.
  9. Z. Chen et al., Measuring and suppressing quantum state leakage in a superconducting qubit, Phys. Rev. Lett. 116, 020501 (2016).
  10. C. J. Wood and J. M. Gambetta, Quantification and characterization of leakage errors, Physical Review A 97, 032306 (2018), publisher: American Physical Society.
  11. M. McEwen et al., Removing leakage-induced correlated errors in superconducting quantum error correction, Nature Communications 12, 1761 (2021).
  12. K. C. o. Miao, Overcoming leakage in quantum error correction, Nature Physics 19, 1780 (2023).
  13. J. M. Martinis, Saving superconducting quantum processors from decay and correlated errors generated by gamma and cosmic rays, npj Quantum Information 7, 1 (2021), publisher: Nature Publishing Group.
  14. G. White, C. Hill, and L. Hollenberg, Performance optimization for drift-robust fidelity improvement of two-qubit gates, Phys. Rev. Appl. 15, 014023 (2021).
  15. A. Kitaev, Fault-tolerant quantum computation by anyons, Annals of Physics 303, 2 (2003).
  16. S. B. Bravyi and A. Y. Kitaev, Quantum codes on a lattice with boundary (1998), arXiv:quant-ph/9811052.
  17. H. Bombin and M. A. Martin-Delgado, Optimal resources for topological two-dimensional stabilizer codes: Comparative study, Physical Review A 76, 012305 (2007), publisher: American Physical Society.
  18. C. Wang, J. Harrington, and J. Preskill, Confinement-Higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory, Annals of Physics 303, 31 (2003), arXiv:quant-ph/0207088.
  19. A. G. Fowler, A. C. Whiteside, and L. C. L. Hollenberg, Towards Practical Classical Processing for the Surface Code, Physical Review Letters 108, 180501 (2012), publisher: American Physical Society.
  20. C. Gidney, Stim: a fast stabilizer circuit simulator, Quantum 5, 497 (2021), publisher: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften.
  21. M. McEwen, D. Bacon, and C. Gidney, Relaxing Hardware Requirements for Surface Code Circuits using Time-dynamics, Quantum 7, 1172 (2023), publisher: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften.
  22. A. G. Fowler, Minimum weight perfect matching of fault-tolerant topological quantum error correction in average O(1) parallel time (2014), _eprint: 1307.1740.
  23. G. Duclos-Cianci and D. Poulin, Fast Decoders for Topological Quantum Codes, Physical Review Letters 104, 050504 (2010), publisher: American Physical Society.
  24. J. R. Wootton and D. Loss, High Threshold Error Correction for the Surface Code, Physical Review Letters 109, 160503 (2012), publisher: American Physical Society.
  25. A. G. Fowler, Optimal complexity correction of correlated errors in the surface code (2013), arXiv:1310.0863 [quant-ph].
  26. N. Delfosse and J. -P. Tillich, A decoding algorithm for CSS codes using the X/Z correlations, in 2014 IEEE International Symposium on Information Theory (2014) pp. 1071–1075, journal Abbreviation: 2014 IEEE International Symposium on Information Theory.
  27. B. Criger and I. Ashraf, Multi-path Summation for Decoding 2D Topological Codes, Quantum 2, 102 (2018), publisher: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften.
  28. N. H. Nickerson and B. J. Brown, Analysing correlated noise on the surface code using adaptive decoding algorithms, Quantum 3, 131 (2019), publisher: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften.
  29. R. Harper, S. T. Flammia, and J. J. Wallman, Efficient learning of quantum noise, Nature Physics 16, 1184 (2020).
  30. C. T. Chubb and S. T. Flammia, Statistical mechanical models for quantum codes with correlated noise, Annales de l’Institut Henri Poincaré D 8, 269 (2021).
  31. R. Harper and S. T. Flammia, Learning Correlated Noise in a 39-Qubit Quantum Processor, PRX Quantum 4, 040311 (2023), publisher: American Physical Society.
  32. F. Battistel, B. Varbanov, and B. Terhal, Hardware-Efficient Leakage-Reduction Scheme for Quantum Error Correction with Superconducting Transmon Qubits, PRX Quantum 2, 030314 (2021), publisher: American Physical Society.
  33. M. McEwen et al., Resisting high-energy impact events through gap engineering in superconducting qubit arrays (2024), _eprint: 2402.15644.
  34. S. Milz and K. Modi, Quantum Stochastic Processes and Quantum non-Markovian Phenomena, PRX Quantum 2, 030201 (2021), publisher: American Physical Society.
  35. A. Tanggara, M. Gu, and K. Bharti, Strategic Code: A Unified Spatio-Temporal Framework for Quantum Error-Correction (2024), arXiv:2405.17567 [quant-ph].
  36. H. Bombín, Single-Shot Fault-Tolerant Quantum Error Correction, Physical Review X 5, 031043 (2015), publisher: American Physical Society.
  37. H. Bombín, Resilience to Time-Correlated Noise in Quantum Computation, Physical Review X 6, 041034 (2016), publisher: American Physical Society.
  38. M. McEwen et al., Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits, Nature Physics 18, 107 (2022), publisher: Nature Publishing Group.
  39. J. Kam, Project repository for detrimental non-markovian errors for surface code memory, https://https://github.com/jkfids/corrqec (2024).
  40. O. Higgott, PyMatching: A Python Package for Decoding Quantum Codes with Minimum-Weight Perfect Matching, ACM Transactions on Quantum Computing 3, 16:1 (2022).
  41. C. Rigetti and M. Devoret, Fully microwave-tunable universal gates in superconducting qubits with linear couplings and fixed transition frequencies, Physical Review B 81, 134507 (2010), publisher: American Physical Society.
  42. Z. Chen et al., Exponential suppression of bit or phase errors with cyclic error correction, Nature 595, 383 (2021).
  43. C. Gidney, Stability Experiments: The Overlooked Dual of Memory Experiments, Quantum 6, 786 (2022), publisher: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com