Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

To Compress or Not To Compress: Energy Trade-Offs and Benefits of Lossy Compressed I/O (2410.23497v1)

Published 30 Oct 2024 in cs.DC

Abstract: Modern scientific simulations generate massive volumes of data, creating significant challenges for I/O and storage systems. Error-bounded lossy compression (EBLC) offers a solution by reducing dataset sizes while preserving data quality within user-specified limits. This study provides the first comprehensive energy characterization of state-of-the-art EBLC algorithms across various scientific datasets, CPU architectures, and operational modes. We analyze the energy consumption patterns of compression and decompression operations, as well as the energy trade-offs in data I/O scenarios. Our findings demonstrate that EBLC can significantly reduce I/O energy consumption, with savings of up to two orders of magnitude compared to uncompressed I/O for large datasets. In multi-node HPC environments, we observe energy reductions of approximately 25% when using EBLC. We also show that EBLC can achieve compression ratios of 10-100x, potentially reducing storage device requirements by nearly two orders of magnitude. Our work demonstrates the relationships between compression ratios, energy efficiency, and data quality, highlighting the importance of considering compressors and error bounds for specific use cases. Based on our results, we estimate that large-scale HPC facilities could save nearly two orders of magnitude the energy on data writing and significantly reduce storage requirements by integrating EBLC into their I/O subsystems. This work provides a framework for system operators and computational scientists to make informed decisions about implementing EBLC for energy-efficient data management in HPC environments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (58)
  1. J. W. Hurrell, M. M. Holland, P. R. Gent, S. Ghan, J. E. Kay, P. J. Kushner, J.-F. Lamarque, W. G. Large, D. Lawrence, K. Lindsay, W. H. Lipscomb, M. C. Long, N. Mahowald, D. R. Marsh, R. B. Neale, P. Rasch, S. Vavrus, M. Vertenstein, D. Bader, W. D. Collins, J. J. Hack, J. Kiehl, and S. Marshall, “The community earth system model: A framework for collaborative research,” Bulletin of the American Meteorological Society, vol. 94, no. 9, pp. 1339 – 1360, 2013.
  2. J. E. Kay, C. Deser, A. Phillips, A. Mai, C. Hannay, G. Strand, J. M. Arblaster, S. C. Bates, G. Danabasoglu, J. Edwards, M. Holland, P. Kushner, J.-F. Lamarque, D. Lawrence, K. Lindsay, A. Middleton, E. Munoz, R. Neale, K. Oleson, L. Polvani, and M. Vertenstein, “The community earth system model (cesm) large ensemble project: A community resource for studying climate change in the presence of internal climate variability,” Bulletin of the American Meteorological Society, vol. 96, no. 8, pp. 1333 – 1349, 2015.
  3. P. E. Dewdney, P. J. Hall, R. T. Schilizzi, and T. J. L. W. Lazio, “The square kilometre array,” Proceedings of the IEEE, vol. 97, no. 8, pp. 1482–1496, 2009.
  4. P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 12, pp. 2674–2683, 2014.
  5. D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving lossy compression for scientific data sets based on multidimensional prediction and error-controlled quantization,” in 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 1129–1139, 2017.
  6. X. Yu, S. Di, K. Zhao, J. Tian, D. Tao, X. Liang, and F. Cappello, “Ultrafast error-bounded lossy compression for scientific datasets,” in Proceedings of the 31st International Symposium on High-Performance Parallel and Distributed Computing, HPDC ’22, (New York, NY, USA), p. 159–171, Association for Computing Machinery, 2022.
  7. X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello, “Error-controlled lossy compression optimized for high compression ratios of scientific datasets,” in 2018 IEEE International Conference on Big Data (Big Data), pp. 438–447, 2018.
  8. X. Liang, K. Zhao, S. Di, S. Li, R. Underwood, A. M. Gok, J. Tian, J. Deng, J. C. Calhoun, D. Tao, Z. Chen, and F. Cappello, “Sz3: A modular framework for composing prediction-based error-bounded lossy compressors,” IEEE Transactions on Big Data, vol. 9, no. 2, pp. 485–498, 2023.
  9. K. Zhao, S. Di, M. Dmitriev, T.-L. D. Tonellot, Z. Chen, and F. Cappello, “Optimizing error-bounded lossy compression for scientific data by dynamic spline interpolation,” in 2021 IEEE 37th International Conference on Data Engineering (ICDE), pp. 1643–1654, 2021.
  10. M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel techniques for compression and reduction of scientific data—the univariate case,” Computing and Visualization in Science, vol. 19, no. 5, pp. 65–76, 2018.
  11. M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel techniques for compression and reduction of scientific data—the multivariate case,” SIAM Journal on Scientific Computing, vol. 41, no. 2, pp. A1278–A1303, 2019.
  12. M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel techniques for compression and reduction of scientific data—the unstructured case,” SIAM Journal on Scientific Computing, vol. 42, no. 2, pp. A1402–A1427, 2020.
  13. X. Liang, B. Whitney, J. Chen, L. Wan, Q. Liu, D. Tao, J. Kress, D. Pugmire, M. Wolf, N. Podhorszki, and S. Klasky, “Mgard+: Optimizing multilevel methods for error-bounded scientific data reduction,” IEEE Transactions on Computers, vol. 71, no. 7, pp. 1522–1536, 2022.
  14. Q. Gong, J. Chen, B. Whitney, X. Liang, V. Reshniak, T. Banerjee, J. Lee, A. Rangarajan, L. Wan, N. Vidal, Q. Liu, A. Gainaru, N. Podhorszki, R. Archibald, S. Ranka, and S. Klasky, “Mgard: A multigrid framework for high-performance, error-controlled data compression and refactoring,” SoftwareX, vol. 24, p. 101590, Dec. 2023.
  15. J. Liu, S. Di, K. Zhao, X. Liang, Z. Chen, and F. Cappello, “Dynamic quality metric oriented error bounded lossy compression for scientific datasets,” in SC22: International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–15, 2022.
  16. G. Wilkins and J. C. Calhoun, “Modeling power consumption of lossy compressed i/o for exascale hpc systems,” in 2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 1118–1126, 2022.
  17. M. Govett, B. Bah, P. Bauer, D. Berod, V. Bouchet, S. Corti, C. Davis, Y. Duan, T. Graham, Y. Honda, A. Hines, M. Jean, J. Ishida, B. Lawrence, J. Li, J. Luterbacher, C. Muroi, K. Rowe, M. Schultz, M. Visbeck, and K. Williams, “Exascale computing and data handling: Challenges and opportunities for weather and climate prediction,” Bulletin of the American Meteorological Society, 2024.
  18. “Lustre,” 2024. http://lustre.org/.
  19. “BeeGFS.” https://www.beegfs.io/content.
  20. The HDF Group, “Hierarchical Data Format, version 5.”
  21. NSF Unidata, G. Davis, R. Rew, D. Heimbigner, E. Hartnett, W. Fisher, and M. Others, “NetCDF-C .”
  22. W. F. Godoy, N. Podhorszki, R. Wang, C. Atkins, G. Eisenhauer, J. Gu, P. Davis, J. Choi, K. Germaschewski, K. Huck, A. Huebl, M. Kim, J. Kress, T. Kurc, Q. Liu, J. Logan, K. Mehta, G. Ostrouchov, M. Parashar, F. Poeschel, D. Pugmire, E. Suchyta, K. Takahashi, N. Thompson, S. Tsutsumi, L. Wan, M. Wolf, K. Wu, and S. Klasky, “Adios 2: The adaptable input output system. a framework for high-performance data management,” SoftwareX, vol. 12, p. 100561, 2020.
  23. S. Huss-Lederman, B. Gropp, A. Skjellum, A. Lumsdaine, B. Saphir, J. Squyres, et al., “Mpi-2: Extensions to the message passing interface,” University of Tennessee, available online at http://www. mpiforum. org/docs/docs. html, 1997.
  24. U. Ayachit, B. Whitlock, M. Wolf, B. Loring, B. Geveci, D. Lonie, and E. W. Bethel, “The sensei generic in situ interface,” in 2016 Second Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV), pp. 40–44, 2016.
  25. M. Oh, S. Lee, S. Just, Y. J. Yu, D.-H. Bae, S. Weil, S. Cho, and H. Y. Yeom, “TiDedup: A new distributed deduplication architecture for ceph,” in 2023 USENIX Annual Technical Conference (USENIX ATC 23), (Boston, MA), pp. 117–131, USENIX Association, July 2023.
  26. S. Park, M. Bhowmik, and A. Uta, “Daos: Data access-aware operating system,” in Proceedings of the 31st International Symposium on High-Performance Parallel and Distributed Computing, HPDC ’22, (New York, NY, USA), p. 4–15, Association for Computing Machinery, 2022.
  27. J. Yu, G. Liu, W. Dong, X. Li, J. Zhang, and F. Sun, “On the load imbalance problem of i/o forwarding layer in hpc systems,” in 2017 3rd IEEE International Conference on Computer and Communications (ICCC), pp. 2424–2428, 2017.
  28. X. Liang, S. Di, D. Tao, S. Li, B. Nicolae, Z. Chen, and F. Cappello, “Improving performance of data dumping with lossy compression for scientific simulation,” in 2019 IEEE International Conference on Cluster Computing (CLUSTER), pp. 1–11, 2019.
  29. K. Zhao, S. Di, D. Perez, X. Liang, Z. Chen, and F. Cappello, “Mdz: An efficient error-bounded lossy compressor for molecular dynamics,” in 2022 IEEE 38th International Conference on Data Engineering (ICDE), pp. 27–40, 2022.
  30. Blosc Development Team, “A fast, compressed and persistent data store library,” 2009-2023. https://blosc.org.
  31. Meta, “Zstandard.” https://pypi.org/project/zstd/, 2023.
  32. Gailly, Jean-loup and Adler, Mark, “A Massively Spiffy Yet Delicately Unobtrusive Compression Library,” 1995-2023. https://zlib.net/.
  33. L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak, “Out-of-core compression and decompression of large n-dimensional scalar fields.,” Comput. Graph. Forum, vol. 22, pp. 343–348, 09 2003.
  34. J. Tian, S. Di, K. Zhao, C. Rivera, M. H. Fulp, R. Underwood, S. Jin, X. Liang, J. Calhoun, D. Tao, and F. Cappello, “cusz: An efficient gpu-based error-bounded lossy compression framework for scientific data,” in Proceedings of the ACM International Conference on Parallel Architectures and Compilation Techniques, PACT ’20, (New York, NY, USA), p. 3–15, Association for Computing Machinery, 2020.
  35. J. Wang, T. Liu, Q. Liu, X. He, H. Luo, and W. He, “Compression ratio modeling and estimation across error bounds for lossy compression,” IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 7, pp. 1621–1635, 2019.
  36. W. Lin, F. Shi, W. Wu, K. Li, G. Wu, and A.-A. Mohammed, “A taxonomy and survey of power models and power modeling for cloud servers,” ACM Comput. Surv., vol. 53, Sept. 2020.
  37. K. O’brien, I. Pietri, R. Reddy, A. Lastovetsky, and R. Sakellariou, “A survey of power and energy predictive models in hpc systems and applications,” ACM Comput. Surv., vol. 50, June 2017.
  38. M. Dayarathna, Y. Wen, and R. Fan, “Data center energy consumption modeling: A survey,” IEEE Communications surveys & tutorials, vol. 18, no. 1, pp. 732–794, 2015.
  39. J. Baliga, R. W. Ayre, K. Hinton, and R. S. Tucker, “Green cloud computing: Balancing energy in processing, storage, and transport,” Proceedings of the IEEE, vol. 99, no. 1, pp. 149–167, 2010.
  40. M. Gamell, I. Rodero, M. Parashar, and S. Poole, “Exploring energy and performance behaviors of data-intensive scientific workflows on systems with deep memory hierarchies,” in 20th Annual International Conference on High Performance Computing, pp. 226–235, IEEE, 2013.
  41. S. L. Song, K. Barker, and D. Kerbyson, “Unified performance and power modeling of scientific workloads,” in Proceedings of the 1st International Workshop on Energy Efficient Supercomputing, pp. 1–8, 2013.
  42. 2013.
  43. K. Chasapis, M. Dolz, M. Kuhn, and T. Ludwig, “Evaluating power-performace benefits of data compression in hpc storage servers,” in IARIA Conference, pp. 29–34, 2014.
  44. K. C. Barr and K. Asanović, “Energy-aware lossless data compression,” ACM Trans. Comput. Syst., vol. 24, p. 250–291, aug 2006.
  45. J. Wang, Q. Chen, T. Liu, Q. Liu, and X. He, “zperf: A statistical gray-box approach to performance modeling and extrapolation for scientific lossy compression,” IEEE Transactions on Computers, vol. 72, no. 9, pp. 2641–2655, 2023.
  46. A. Tarraf, M. Schreiber, A. Cascajo, J.-B. Besnard, M.-A. Vef, D. Huber, S. Happ, A. Brinkmann, D. E. Singh, H.-C. Hoppe, et al., “Malleability in modern hpc systems: Current experiences, challenges, and future opportunities,” IEEE Transactions on Parallel and Distributed Systems, 2024.
  47. K. Sen, S. Vadhiyar, and P. Vinayachandran, “Strategies for fast i/o throughput in large-scale climate modeling applications,” in 2023 IEEE 30th International Conference on High Performance Computing, Data, and Analytics (HiPC), pp. 203–212, IEEE, 2023.
  48. B. Xie, J. Chase, D. Dillow, O. Drokin, S. Klasky, S. Oral, and N. Podhorszki, “Characterizing output bottlenecks in a supercomputer,” in SC ’12: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, pp. 1–11, 2012.
  49. J. Liu, S. Di, K. Zhao, X. Liang, Z. Chen, and F. Cappello, “Faz: A flexible auto-tuned modular error-bounded compression framework for scientific data,” in Proceedings of the 37th ACM International Conference on Supercomputing, ICS ’23, (New York, NY, USA), p. 1–13, Association for Computing Machinery, 2023.
  50. D. Tao, S. Di, H. Guo, Z. Chen, and F. Cappello, “Z-checker: A framework for assessing lossy compression of scientific data,” The International Journal of High Performance Computing Applications, vol. 33, no. 2, pp. 285–303, 2019.
  51. S. T. Brown, P. Buitrago, E. Hanna, S. Sanielevici, R. Scibek, and N. A. Nystrom, “Bridges-2: A platform for rapidly-evolving and data intensive research,” in Practice and Experience in Advanced Research Computing 2021: Evolution Across All Dimensions, PEARC ’21, (New York, NY, USA), Association for Computing Machinery, 2021.
  52. R. Underwood, V. Malvoso, J. C. Calhoun, S. Di, and F. Cappello, “Productive and performant generic lossy data compression with libpressio,” in 2021 7th International Workshop on Data Analysis and Reduction for Big Scientific Data (DRBSD-7), pp. 1–10, IEEE, 2021.
  53. J. Veiga, J. Enes, R. R. Expósito, and J. Touriño, “Bdev 3.0: Energy efficiency and microarchitectural characterization of big data processing frameworks,” Future Generation Computer Systems, vol. 86, pp. 565–581, 2018.
  54. D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting performance data with papi-c,” in Tools for High Performance Computing 2009 (M. S. Müller, M. M. Resch, A. Schulz, and W. E. Nagel, eds.), (Berlin, Heidelberg), pp. 157–173, Springer Berlin Heidelberg, 2010.
  55. K. Zhao, S. Di, X. Lian, S. Li, D. Tao, J. Bessac, Z. Chen, and F. Cappello, “Sdrbench: Scientific data reduction benchmark for lossy compressors,” in 2020 IEEE International Conference on Big Data (Big Data), pp. 2716–2724, 2020.
  56. K. Heitmann, T. D. Uram, H. Finkel, N. Frontiere, S. Habib, A. Pope, E. Rangel, J. Hollowed, D. Korytov, P. Larsen, et al., “Hacc cosmological simulations: First data release,” The Astrophysical Journal Supplement Series, vol. 244, no. 1, p. 17, 2019.
  57. A. S. Almgren, J. B. Bell, M. J. Lijewski, Z. Lukić, and E. Van Andel, “Nyx: A massively parallel amr code for computational cosmology,” The Astrophysical Journal, vol. 765, no. 1, p. 39, 2013.
  58. J. H. Chen, A. Choudhary, B. de Supinski, M. DeVries, E. R. Hawkes, S. Klasky, W. K. Liao, K. L. Ma, J. Mellor-Crummey, N. Podhorszki, R. Sankaran, S. Shende, and C. S. Yoo, “Terascale direct numerical simulations of turbulent combustion using s3d,” Computational Science and Discovery, vol. 2, p. 015001, jan 2009.

Summary

  • The paper demonstrates that employing error-bounded lossy compression in HPC I/O can reduce energy consumption by roughly 25% and achieve savings up to two orders of magnitude.
  • It evaluates state-of-the-art compressors such as SZ, SZ3, QoZ, and ZFP across diverse scientific datasets, achieving compression ratios from 10x to 100x.
  • The study highlights the trade-off between maintaining high data fidelity and increased energy usage, informing the design of adaptive compression techniques in HPC systems.

Energy Trade-Offs and Implications of Lossy Compression in HPC I/O

The paper "To Compress or Not To Compress: Energy Trade-Offs and Benefits of Lossy Compressed I/O" offers an in-depth exploration of the energy implications of using error-bounded lossy compression (EBLC) within high-performance computing (HPC) environments. With the exponential growth of scientific data generation, notably from large simulations and scientific instruments, the need for efficient data management strategies is paramount to mitigate storage and I/O bottlenecks. The authors address this by thoroughly characterizing the energy consumption profiles of modern EBLC algorithms, presenting evidence of significant energy savings when these algorithms are integrated into HPC workflows.

Numerical Results and Bold Assertions

The paper articulates several compelling numerical insights. A key finding is the reduced energy consumption during I/O operations when utilizing EBLC, with potential savings up to two orders of magnitude compared to uncompressed I/O. This finding is particularly notable in multi-node HPC settings, suggesting nearly 25% energy savings can be realized when data is compressed before storage or transmission. The observed compression ratios range from 10x to 100x, signifying a possibility to dramatically reduce storage device requirements by up to two orders of magnitude.

Computational and Energy Characterization

The paper methodically evaluates a spectrum of state-of-the-art compressors, including SZ, SZ3, QoZ, and ZFP, across diverse datasets in scientific domains such as cosmology and climate simulation. The energy consumption patterns are analyzed across generations of CPU architectures and varying operational modes, ones often employed within HPC infrastructures like serial and multi-threaded OpenMP operations. Notably, newer CPU architectures such as Intel's Xeon CPU Max 9480 display superior energy efficiency, suggesting the importance of aligning software optimizations with hardware capabilities.

In addition to profiling compressor energy consumption, the paper examines the interplay between compression ratios, reconstruction accuracy, and their impact on overall system energy usage. Compression algorithms like SZ3, which utilize sophisticated prediction methods for higher fidelity, exhibit varying levels of energy consumption based on specified error bounds. Lower error bounds, while yielding high fidelity, correlate with increased energy expenditure—a critical factor HPC system architects must consider when defining acceptable data quality thresholds.

Implications and Future Directions

The implications of these findings extend to both the theoretical understanding and practical deployment of compression in data-intensive domains. Practically, the integration of EBLC offers an actionable strategy for energy-efficient data management especially in exascale computing environments facing stringent energy caps, like the U.S. Department of Energy's target of 20-40 MWs for forthcoming systems. Theoretically, the insights encourage the ongoing development of adaptive compression algorithms that optimize the trade-offs between data fidelity, compression ratio, and energy consumption.

Looking forward, the paper encourages further exploration into adaptive, application-specific compression techniques and the potential integration with emergent computing paradigms, such as GPU acceleration. The refinement of energy models and the development of predictive analytics could also enhance decision-making tools for configuring data management strategies in dynamic HPC environments.

In conclusion, the paper compellingly asserts the viability and necessity of employing EBLC algorithms in modern HPC systems, with particular reverence to optimizing energy efficiency alongside storage and I/O performance. Such advancements are vital as we navigate the computational demands of current and future scientific endeavors.

X Twitter Logo Streamline Icon: https://streamlinehq.com

HackerNews