Brain Network Dynamics and Multiscale Modelling of Neurodegenerative Disorders: A Review (2410.23445v1)
Abstract: It is essential to understand the complex structure of the human brain to develop new treatment approaches for neurodegenerative disorders (NDDs). This review paper comprehensively discusses the challenges associated with modelling the complex brain networks and dynamic processes involved in NDDs, particularly Alzheimer's disease (AD), Parkinson's disease (PD), and cortical spreading depression (CSD). We investigate how the brain's biological processes and associated multiphysics interact and how this influences the structure and functionality of the brain. We review the literature on brain network models and dynamic processes, highlighting the need for sophisticated mathematical and statistical modelling techniques. Specifically, we go through large-scale brain network models relevant to AD and PD, highlighting the pathological mechanisms and potential therapeutic strategies investigated in the literature. Additionally, we investigate the propagation of CSD in the brain and its implications for neurological disorders. Furthermore, we discuss how data-driven approaches and artificial neural networks refine and validate models related to NDDs. Overall, this review underscores the significance of coupled multiscale models in deciphering disease mechanisms, offering potential avenues for therapeutic development and advancing our understanding of pathological brain dynamics.
- A. Parvizi-Fard, M. Amiri, D. Kumar, M. M. Iskarous, and N. V. Thakor, “A functional spiking neuronal network for tactile sensing pathway to process edge orientation,” Scientific Reports, vol. 11, no. 1, pp. 1–16, 2021.
- D. Ziegler, “In-school neurological reparative therapy for traumatized students,” Optimizing Learning Outcomes: Proven Brain-centric, Trauma-Sensitive Practices, pp. 150–165, 2017.
- H. Shaheen, “Multiscale modelling of brain networks and the analysis of dynamic processes in neurodegenerative disorders,” Theses and Dissertations (Comprehensive). 2604. https://scholars.wlu.ca/etd/2604, 2024.
- N. Herregods, R. G. Lambert, E. Schiettecatte, J. Dehoorne, T. Renson, F. Laloo, T. Van Den Berghe, L. B. Jans, and J. L. Jaremko, “Blurring and irregularity of the subchondral cortex in pediatric sacroiliac joints on t1 images: Incidence of normal findings that can mimic erosions,” Arthritis Care & Research, vol. 75, no. 1, pp. 190–197, 2023.
- N. Nazlee, G. D. Waiter, and A.-L. Sandu, “Age-associated sex and asymmetry differentiation in hemispheric and lobar cortical ribbon complexity across adulthood: A uk biobank imaging study,” Human Brain Mapping, vol. 44, no. 1, pp. 49–65, 2023.
- H. A. González-Usigli, G. G. Ortiz, C. Charles-Niño, M. A. Mireles-Ramírez, F. P. Pacheco-Moisés, B. M. d. G. Torres-Mendoza, J. d. J. Hernández-Cruz, D. L. d. C. Delgado-Lara, and L. J. Ramírez-Jirano, “Neurocognitive psychiatric and neuropsychological alterations in Parkinson’s disease: A basic and clinical approach,” Brain Sciences, vol. 13, no. 3, p. 508, 2023.
- E. Bruner, A. Battaglia-Mayer, and R. Caminiti, “The parietal lobe evolution and the emergence of material culture in the human genus,” Brain Structure and Function, vol. 228, no. 1, pp. 145–167, 2023.
- D. Berron, D. van Westen, R. Ossenkoppele, O. Strandberg, and O. Hansson, “Medial temporal lobe connectivity and its associations with cognition in early Alzheimer’s disease,” Brain, vol. 143, no. 4, pp. 1233–1248, 2020.
- A. Rehman and Y. Al Khalili, “Neuroanatomy, occipital lobe,” in StatPearls [Internet]. StatPearls Publishing, 2023.
- C. T. Miller, D. Gire, K. Hoke, A. C. Huk, D. Kelley, D. A. Leopold, M. C. Smear, F. Theunissen, M. Yartsev, and C. M. Niell, “Natural behavior is the language of the brain,” Current Biology, vol. 32, no. 10, pp. R482–R493, 2022.
- A. Fletcher and M. Benveniste, “A new method for training creativity: narrative as an alternative to divergent thinking,” Annals of the New York Academy of Sciences, vol. 1512, no. 1, pp. 29–45, 2022.
- A. Kok, “Cognitive control, motivation and fatigue: A cognitive neuroscience perspective,” Brain and Cognition, vol. 160, p. 105880, 2022.
- H. Shaheen, S. Pal, and R. Melnik, “Astrocytic clearance and fragmentation of toxic proteins in Alzheimer’s disease on large-scale brain networks,” Physica D: Nonlinear Phenomena, p. 133839, 2023.
- N. Shekhar, S. Tyagi, S. Rani, and A. K. Thakur, “Potential of capric acid in neurological disorders: An overview,” Neurochemical Research, vol. 48, no. 3, pp. 697–712, 2023.
- K. Oishi, J. Chotiyanonta, D. Wu, M. I. Miller, S. Mori, K. Oishi et al., “Developmental trajectories of the human embryologic brain regions,” Neuroscience Letters, vol. 708, p. 134342, 2019.
- G. R. Nikrahan, “Theory of brain complexity and marital behaviors: The application of complexity science and neuroscience to explain the complexities of marital behaviors,” Frontiers in Human Neuroscience, vol. 17, p. 83, 2023.
- S. L. Bressler and V. Menon, “Large-scale brain networks in cognition: emerging methods and principles,” Trends in Cognitive Sciences, vol. 14, no. 6, pp. 277–290, 2010.
- D. Khodagholy, J. J. Ferrero, J. Park, Z. Zhao, and J. N. Gelinas, “Large-scale, closed-loop interrogation of neural circuits underlying cognition,” Trends in Neurosciences, 2022.
- T. Dutta and A. Bandyopadhyay, “Unsolved mysteries of the mind and the brain: Fractal brain hypothesis,” in Emotion, Cognition and Silent Communication: Unsolved Mysteries. Springer, 2024, pp. 1–40.
- S. López-Ortiz, G. Caruso, E. Emanuele, H. Menéndez, S. Peñín-Grandes, C. S. Guerrera, F. Caraci, R. Nisticò, A. Lucia, A. Santos-Lozano et al., “Digging into the intrinsic capacity concept: Can it be applied to alzheimer’s disease?” Progress in Neurobiology, vol. 234, p. 102574, 2024.
- C. Seguin, O. Sporns, and A. Zalesky, “Brain network communication: concepts, models and applications,” Nature reviews neuroscience, vol. 24, no. 9, pp. 557–574, 2023.
- D. Papo and J. Buldú, “Does the brain behave like a (complex) network? i. dynamics,” Physics of life reviews, vol. 48, pp. 47–98, 2023.
- S. Ramaswamy, “Data-driven multiscale computational models of cortical and subcortical regions,” Current opinion in neurobiology, vol. 85, p. 102842, 2024.
- P. Acharya, N. Y. Choi, S. Shrestha, S. Jeong, and M.-Y. Lee, “Brain organoids: A revolutionary tool for modeling neurological disorders and development of therapeutics,” Biotechnology and Bioengineering, vol. 121, no. 2, pp. 489–506, 2024.
- R. M. Lorenzi, A. Geminiani, Y. Zerlaut, M. De Grazia, A. Destexhe, C. A. Gandini Wheeler-Kingshott, F. Palesi, C. Casellato, and E. D’Angelo, “A multi-layer mean-field model of the cerebellum embedding microstructure and population-specific dynamics,” PLOS Computational Biology, vol. 19, no. 9, p. e1011434, 2023.
- F. Palesi, R. M. Lorenzi, C. Casellato, P. Ritter, V. Jirsa, C. A. Gandini Wheeler-Kingshott, and E. D’angelo, “The importance of cerebellar connectivity on simulated brain dynamics,” Frontiers in Cellular Neuroscience, vol. 14, p. 240, 2020.
- J. S. Goldman, N. Tort-Colet, M. Di Volo, E. Susin, J. Bouté, M. Dali, M. Carlu, T.-A. Nghiem, T. Górski, and A. Destexhe, “Bridging single neuron dynamics to global brain states,” Frontiers in systems neuroscience, vol. 13, p. 75, 2019.
- F. Tesler, R. M. Lorenzi, A. Ponzi, C. Casellato, F. Palesi, D. Gandolfi, C. A. Gandini Wheeler Kingshott, J. Mapelli, E. D’Angelo, M. Migliore et al., “Multiscale modeling of neuronal dynamics in hippocampus ca1,” Frontiers in Computational Neuroscience, vol. 18, p. 1432593, 2024.
- J. Overwiening, F. Tesler, D. Guarino, and A. Destexhe, “A multi-scale study of thalamic state-dependent responsiveness,” bioRxiv, pp. 2023–12, 2023.
- P. Sanz-Leon, S. A. Knock, A. Spiegler, and V. K. Jirsa, “Mathematical framework for large-scale brain network modeling in the virtual brain,” Neuroimage, vol. 111, pp. 385–430, 2015.
- S. Vatansever, A. Schlessinger, D. Wacker, H. Ü. Kaniskan, J. Jin, M.-M. Zhou, and B. Zhang, “Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: State-of-the-arts and future directions,” Medicinal research reviews, vol. 41, no. 3, pp. 1427–1473, 2021.
- M. Alber, A. B. Tepole, W. R. Cannon, S. De, S. Dura-Bernal, K. Garikipati, G. Karniadakis, W. W. Lytton, P. Perdikaris, L. Petzold et al., “Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences,” NPJ Digital Medicine, vol. 2, no. 1, pp. 1–11, 2019.
- L. Keresztes, E. Szögi, B. Varga, and V. Grolmusz, “Introducing and applying newtonian blurring: an augmented dataset of 126,000 human connectomes at braingraph. org,” Scientific Reports, vol. 12, no. 1, p. 3102, 2022.
- H. Shibasaki, “Human brain mapping: hemodynamic response and electrophysiology,” Clinical Neurophysiology, vol. 119, no. 4, pp. 731–743, 2008.
- H. Shaheen, S. Singh, and R. Melnik, “A neuron-glial model of exosomal release in the onset and progression of alzheimer’s disease,” Frontiers in Computational Neuroscience, vol. 15, p. 653097, 2021.
- P. Perdikaris, L. Grinberg, and G. E. Karniadakis, “Multiscale modeling and simulation of brain blood flow,” Physics of Fluids, vol. 28, no. 2, p. 021304, 2016.
- Y. Xia and N. Zabaras, “Bayesian multiscale deep generative model for the solution of high-dimensional inverse problems,” Journal of Computational Physics, vol. 455, p. 111008, 2022.
- H. Shaheen, R. Melnik, and S. Sundeep, “Data-driven stochastic model for quantifying the interplay between amyloid-beta and calcium levels in alzheimer’s disease,” Statistical Analysis and Data Mining: The ASA Data Science Journal, vol. 17, no. 2, p. e11679, 2024.
- Z. Ahmed, K. Mohamed, S. Zeeshan, and X. Dong, “Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine,” Database, vol. 2020, p. baaa010, 2020.
- D. Bishara, Y. Xie, W. K. Liu, and S. Li, “A state-of-the-art review on machine learning-based multiscale modeling, simulation, homogenization and design of materials,” Archives of Computational Methods in Engineering, vol. 30, no. 1, pp. 191–222, 2023.
- H. Shaheen and R. Melnik, “Neural dynamics in parkinson’s disease: Integrating machine learning and stochastic modelling with connectomic data. in: Franco, l., de mulatier, c., paszynski, m., krzhizhanovskaya, v.v., dongarra, j.j., sloot, p.m.a. (eds) computational science iccs 2024. lecture notes in computer science.” in International Conference on Computational Science, vol. 14835. Springer, Cham, 2024, pp. 46–60.
- D. J. Greene, C. N. Lessov-Schlaggar, and B. L. Schlaggar, “Development of the brain’s functional network architecture,” in Neurobiology of Language. Elsevier, 2016, pp. 399–406.
- A. C. Vogel, J. D. Power, S. E. Petersen, and B. L. Schlaggar, “Development of the brain’s functional network architecture,” Neuropsychology Review, vol. 20, pp. 362–375, 2010.
- D. S. Bassett and O. Sporns, “Network neuroscience,” Nature Neuroscience, vol. 20, no. 3, pp. 353–364, 2017.
- L. Q. Uddin, R. F. Betzel, J. R. Cohen, J. S. Damoiseaux, F. De Brigard, S. B. Eickhoff, A. Fornito, C. Gratton, E. M. Gordon, A. R. Laird et al., “Controversies and progress on standardization of large-scale brain network nomenclature,” Network Neuroscience, pp. 1–111, 2022.
- H.-J. Park and K. Friston, “Structural and functional brain networks: from connections to cognition,” Science, vol. 342, no. 6158, p. 1238411, 2013.
- M. M. Schoonheim, T. A. Broeders, and J. J. Geurts, “The network collapse in multiple sclerosis: An overview of novel concepts to address disease dynamics,” NeuroImage: Clinical, p. 103108, 2022.
- U. Braun, A. Schaefer, R. F. Betzel, H. Tost, A. Meyer-Lindenberg, and D. S. Bassett, “From maps to multi-dimensional network mechanisms of mental disorders,” Neuron, vol. 97, no. 1, pp. 14–31, 2018.
- O. Sporns, “Structure and function of complex brain networks,” Dialogues in Clinical Neuroscience, 2022.
- D. S. Bassett, P. Zurn, and J. I. Gold, “On the nature and use of models in network neuroscience,” Nature Reviews Neuroscience, vol. 19, no. 9, pp. 566–578, 2018.
- P. E. Downing, Y. Jiang, M. Shuman, and N. Kanwisher, “A cortical area selective for visual processing of the human body,” Science, vol. 293, no. 5539, pp. 2470–2473, 2001.
- N. Kanwisher, J. McDermott, and M. M. Chun, “The fusiform face area: a module in human extrastriate cortex specialized for face perception,” Journal of Neuroscience, vol. 17, no. 11, pp. 4302–4311, 1997.
- C. W. Lynn and D. S. Bassett, “The physics of brain network structure, function and control,” Nature Reviews Physics, vol. 1, no. 5, pp. 318–332, 2019.
- K. J. Friston, “Modalities, modes, and models in functional neuroimaging,” Science, vol. 326, no. 5951, pp. 399–403, 2009.
- P. A. Bandettini, “Functional mri: A confluence of fortunate circumstances,” Neuroimage, vol. 61, no. 2, pp. A3–A11, 2012.
- M. Aqil, S. Atasoy, M. L. Kringelbach, and R. Hindriks, “Graph neural fields: A framework for spatiotemporal dynamical models on the human connectome,” PLoS Computational Biology, vol. 17, no. 1, p. e1008310, 2021.
- T. Kunze, A. Hunold, J. Haueisen, V. Jirsa, and A. Spiegler, “Transcranial direct current stimulation changes resting state functional connectivity: A large-scale brain network modeling study,” Neuroimage, vol. 140, pp. 174–187, 2016.
- Z. Molnár, G. J. Clowry, N. Šestan, A. Alzu’bi, T. Bakken, R. F. Hevner, P. S. Hüppi, I. Kostović, P. Rakic, E. Anton et al., “New insights into the development of the human cerebral cortex,” Journal of Anatomy, vol. 235, no. 3, pp. 432–451, 2019.
- H. Shaheen, S. Pal, and R. Melnik, “Multiscale co-simulation of deep brain stimulation with brain networks in neurodegenerative disorders,” Brain Multiphysics, vol. 3, p. 100058, 2022.
- O. Sporns, “Network attributes for segregation and integration in the human brain,” Current Opinion in Neurobiology, vol. 23, no. 2, pp. 162–171, 2013.
- ——, “The human connectome: a complex network,” Annals of the new York Academy of Sciences, vol. 1224, no. 1, pp. 109–125, 2011.
- C. Presigny and F. D. V. Fallani, “Colloquium: Multiscale modeling of brain network organization,” Reviews of Modern Physics, vol. 94, no. 3, p. 031002, 2022.
- E. D’Angelo and V. Jirsa, “The quest for multiscale brain modeling,” Trends in Neurosciences, 2022.
- R. M. Sabbatini, “Neurons and synapses. the history of its discovery,” Brain and Mind., vol. 17, pp. 1–6, 2003.
- E. Y. Jones, “Understanding cell signalling systems: paving the way for new therapies,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 373, no. 2036, p. 20130155, 2015.
- O. Sporns, G. Tononi, and R. Kötter, “The human connectome: a structural description of the human brain,” PLoS Comput Biol, vol. 1, no. 4, p. e42, 2005.
- S. M. Smith, “The future of fmri connectivity,” Neuroimage, vol. 62, no. 2, pp. 1257–1266, 2012.
- O. Sporns, “Graph theory methods: applications in brain networks,” Dialogues in Clinical Neuroscience, 2022.
- B. C. Bernhardt, L. Bonilha, and D. W. Gross, “Network analysis for a network disorder: the emerging role of graph theory in the study of epilepsy,” Epilepsy & Behavior, vol. 50, pp. 162–170, 2015.
- D. Mears and H. B. Pollard, “Network science and the human brain: using graph theory to understand the brain and one of its hubs, the amygdala, in health and disease,” Journal of Neuroscience Research, vol. 94, no. 6, pp. 590–605, 2016.
- F. V. Farahani, W. Karwowski, and N. R. Lighthall, “Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review,” Frontiers in Neuroscience, vol. 13, p. 585, 2019.
- M. Palombo, A. Ianus, M. Guerreri, D. Nunes, D. C. Alexander, N. Shemesh, and H. Zhang, “Sandi: a compartment-based model for non-invasive apparent soma and neurite imaging by diffusion mri,” Neuroimage, vol. 215, p. 116835, 2020.
- B. Szalkai, C. Kerepesi, B. Varga, and V. Grolmusz, “High-resolution directed human connectomes and the consensus connectome dynamics,” Plos One, vol. 14, no. 4, p. e0215473, 2019.
- B. Tadić, M. Andjelković, and R. Melnik, “Functional geometry of human connectomes,” Scientific Reports, vol. 9, no. 1, pp. 1–12, 2019.
- G. Deco, G. Tononi, M. Boly, and M. L. Kringelbach, “Rethinking segregation and integration: contributions of whole-brain modelling,” Nature Reviews Neuroscience, vol. 16, no. 7, pp. 430–439, 2015.
- A. Fornito, A. Zalesky, and M. Breakspear, “The connectomics of brain disorders,” Nature Reviews Neuroscience, vol. 16, no. 3, pp. 159–172, 2015.
- T. C. Lacy, P. A. Robinson, K. M. Aquino, and J. C. Pang, “Cortical depth-dependent modeling of visual hemodynamic responses,” Journal of Theoretical Biology, vol. 535, p. 110978, 2022.
- B. Szalkai, C. Kerepesi, B. Varga, and V. Grolmusz, “Parameterizable consensus connectomes from the human connectome project: the budapest reference connectome server v3. 0,” Cognitive Neurodynamics, vol. 11, no. 1, pp. 113–116, 2017.
- J. A. McNab, B. L. Edlow, T. Witzel, S. Y. Huang, H. Bhat, K. Heberlein, T. Feiweier, K. Liu, B. Keil, J. Cohen-Adad et al., “The Human Connectome Project and beyond: initial applications of 300 mt/m gradients,” Neuroimage, vol. 80, pp. 234–245, 2013.
- C. Kerepesi, B. Szalkai, B. Varga, and V. Grolmusz, “How to direct the edges of the connectomes: Dynamics of the consensus connectomes and the development of the connections in the human brain,” Plos One, vol. 11, no. 6, p. e0158680, 2016.
- B. Seeley, “Neurodegenerative diseases target large-scale human brain networks,” Alzheimer’s & Dementia, vol. 4, no. 6, p. S167, 2010.
- M. G. Erkkinen, M.-O. Kim, and M. D. Geschwind, “Clinical neurology and epidemiology of the major neurodegenerative diseases,” Cold Spring Harbor Perspectives in Biology, vol. 10, no. 4, p. a033118, 2018.
- R. L. Buckner, A. Z. Snyder, B. J. Shannon, G. LaRossa, R. Sachs, A. F. Fotenos, Y. I. Sheline, W. E. Klunk, C. A. Mathis, J. C. Morris et al., “Molecular, structural, and functional characterization of alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory,” Journal of Neuroscience, vol. 25, no. 34, pp. 7709–7717, 2005.
- J. J. Palop, J. Chin, and L. Mucke, “A network dysfunction perspective on neurodegenerative diseases,” Nature, vol. 443, no. 7113, pp. 768–773, 2006.
- K. McGahan and J. Keener, “A mathematical model analyzing temperature threshold dependence in cold sensitive neurons,” Plos One, vol. 15, no. 8, p. e0237347, 2020.
- W. W. Seeley, R. K. Crawford, J. Zhou, B. L. Miller, and M. D. Greicius, “Neurodegenerative diseases target large-scale human brain networks,” Neuron, vol. 62, no. 1, pp. 42–52, 2009.
- K. Supekar, V. Menon, D. Rubin, M. Musen, and M. D. Greicius, “Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease,” PLoS Comput Biol, vol. 4, no. 6, p. e1000100, 2008.
- N. B. Dadario and M. E. Sughrue, “Should neurosurgeons try to preserve non-traditional brain networks? a systematic review of the neuroscientific evidence,” Journal of Personalized Medicine, vol. 12, no. 4, p. 587, 2022.
- R. Frank and R. Hargreaves, “Clinical biomarkers in drug discovery and development,” Nature Reviews Drug Discovery, vol. 2, no. 7, pp. 566–580, 2003.
- L. Giampietri, E. Belli, M. F. Beatino, S. Giannoni, G. Palermo, N. Campese, G. Tognoni, G. Siciliano, R. Ceravolo, C. De Luca et al., “Fluid biomarkers in Alzheimer’s disease and other neurodegenerative disorders: Toward integrative diagnostic frameworks and tailored treatments,” Diagnostics, vol. 12, no. 4, p. 796, 2022.
- P. N. Young, M. Estarellas, E. Coomans, M. Srikrishna, H. Beaumont, A. Maass, A. V. Venkataraman, R. Lissaman, D. Jiménez, M. J. Betts et al., “Imaging biomarkers in neurodegeneration: current and future practices,” Alzheimer’s Research & Therapy, vol. 12, no. 1, pp. 1–17, 2020.
- S. Palmqvist, P. Tideman, N. Mattsson-Carlgren, and et al, “Blood biomarkers to detect alzheimer disease in primary care and secondary care,” JAMA, doi:10.1001/jama.2024.13855, 2024.
- J. M. Ranson, M. Bucholc, D. Lyall, D. Newby, L. Winchester, N. P. Oxtoby, M. Veldsman, T. Rittman, S. Marzi, N. Skene et al., “Harnessing the potential of machine learning and artificial intelligence for dementia research,” Brain Informatics, vol. 10, no. 1, p. 6, 2023.
- J. B. Ewen, W. Z. Potter, and J. A. Sweeney, “Biomarkers and neurobehavioral diagnosis,” Biomarkers in Neuropsychiatry, vol. 4, p. 100029, 2021.
- G. C. Peng, M. Alber, A. Buganza Tepole, W. R. Cannon, S. De, S. Dura-Bernal, K. Garikipati, G. Karniadakis, W. W. Lytton, P. Perdikaris et al., “Multiscale modeling meets machine learning: What can we learn?” Archives of Computational Methods in Engineering, vol. 28, pp. 1017–1037, 2021.
- O. Babich, V. Larina, S. Ivanova, A. Tarasov, M. Povydysh, A. Orlova, J. Strugar, and S. Sukhikh, “Phytotherapeutic approaches to the prevention of age-related changes and the extension of active longevity,” Molecules, vol. 27, no. 7, p. 2276, 2022.
- H. Shaheen and R. Melnik, “Deep brain stimulation with a computational model for the cortex-thalamus-basal-ganglia system and network dynamics of neurological disorders,” Computational and Mathematical Methods, vol. 2022, 2021.
- M. Mengi and D. Malhotra, “Artificial intelligence based techniques for the detection of socio-behavioral disorders: a systematic review,” Archives of Computational Methods in Engineering, pp. 1–45, 2021.
- E. Vendel, V. Rottschäfer, and E. C. de Lange, “The need for mathematical modelling of spatial drug distribution within the brain,” Fluids and Barriers of the CNS, vol. 16, no. 1, p. 12, 2019.
- G. Guidoboni, R. Sacco, M. Szopos, L. Sala, A. C. Verticchio Vercellin, B. Siesky, and A. Harris, “Neurodegenerative disorders of the eye and of the brain: a perspective on their fluid-dynamical connections and the potential of mechanism-driven modeling,” Frontiers in Neuroscience, vol. 14, p. 566428, 2020.
- X. Zhang, U. Braun, H. Tost, and D. S. Bassett, “Data-driven approaches to neuroimaging analysis to enhance psychiatric diagnosis and therapy,” Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, vol. 5, no. 8, pp. 780–790, 2020.
- A. Vosoughi, S. Sadigh-Eteghad, M. Ghorbani, S. Shahmorad, M. Farhoudi, M. A. Rafi, and Y. Omidi, “Mathematical models to shed light on amyloid-beta and tau protein dependent pathologies in Alzheimer’s disease,” Neuroscience, vol. 424, pp. 45–57, 2020.
- L. Marzetti, A. Basti, F. Chella, A. D’Andrea, J. Syrjälä, and V. Pizzella, “Brain functional connectivity through phase coupling of neuronal oscillations: a perspective from magnetoencephalography,” Frontiers in Neuroscience, vol. 13, p. 964, 2019.
- D. Battaglia and A. Brovelli, “Functional connectivity and neuronal dynamics: insights from computational methods,” The Cognitive Neurosciences, Sixth Edition, 2020.
- S. Bakshi, V. Chelliah, C. Chen, and P. H. van der Graaf, “Mathematical biology models of parkinson’s disease,” CPT: Pharmacometrics & Systems Pharmacology, vol. 8, no. 2, pp. 77–86, 2019.
- G. Tandon, S. Yadav, and S. Kaur, “Pathway modeling and simulation analysis,” in Bioinformatics. Elsevier, 2022, pp. 409–423.
- A. Surguchov, “Biomarkers in Parkinson’s disease,” Neurodegenerative diseases biomarkers: Towards translating research to clinical practice, pp. 155–180, 2022.
- M. Rubinov and O. Sporns, “Complex network measures of brain connectivity: uses and interpretations,” Neuroimage, vol. 52, no. 3, pp. 1059–1069, 2010.
- L. E. Suárez, R. D. Markello, R. F. Betzel, and B. Misic, “Linking structure and function in macroscale brain networks,” Trends in Cognitive Sciences, vol. 24, no. 4, pp. 302–315, 2020.
- M. P. Van den Heuvel and O. Sporns, “Network hubs in the human brain,” Trends in Cognitive Sciences, vol. 17, no. 12, pp. 683–696, 2013.
- S. Pal and R. Melnik, “Nonlocal models in the analysis of brain neurodegenerative protein dynamics with application to alzheimer’s disease,” Scientific Reports, vol. 12, no. 1, p. 7328, 2022.
- K. G. Schilling, C. M. Tax, F. Rheault, B. A. Landman, A. W. Anderson, M. Descoteaux, and L. Petit, “Prevalence of white matter pathways coming into a single white matter voxel orientation: The bottleneck issue in tractography,” Human Brain Mapping, vol. 43, no. 4, pp. 1196–1213, 2022.
- J. Del Gaizo, J. Fridriksson, G. Yourganov, A. E. Hillis, G. Hickok, B. Misic, C. Rorden, and L. Bonilha, “Mapping language networks using the structural and dynamic brain connectomes,” Eneuro, vol. 4, no. 5, 2017.
- A. S. Keller, V. J. Sydnor, A. Pines, D. A. Fair, D. S. Bassett, and T. D. Satterthwaite, “Hierarchical functional system development supports executive function,” Trends in Cognitive Sciences, 2022.
- M. C. Litwińczuk, N. Muhlert, L. Cloutman, N. Trujillo-Barreto, and A. Woollams, “Combination of structural and functional connectivity explains unique variation in specific domains of cognitive function,” NeuroImage, vol. 262, p. 119531, 2022.
- C. Andica, K. Kamagata, T. Hatano, Y. Saito, K. Ogaki, N. Hattori, and S. Aoki, “Mr biomarkers of degenerative brain disorders derived from diffusion imaging,” Journal of Magnetic Resonance Imaging, vol. 52, no. 6, pp. 1620–1636, 2020.
- J. Cummings, “The role of biomarkers in Alzheimer’s disease drug development,” Reviews on Biomarker Studies in Psychiatric and Neurodegenerative Disorders, pp. 29–61, 2019.
- L. M. Oliveira, T. Gasser, R. Edwards, M. Zweckstetter, R. Melki, L. Stefanis, H. A. Lashuel, D. Sulzer, K. Vekrellis, G. M. Halliday et al., “Alpha-synuclein research: Defining strategic moves in the battle against Parkinson’s disease,” NPJ Parkinson’s Disease, vol. 7, no. 1, p. 65, 2021.
- A. M. Fjell, M. H. Sneve, A. B. Storsve, H. Grydeland, A. Yendiki, and K. B. Walhovd, “Brain events underlying episodic memory changes in aging: a longitudinal investigation of structural and functional connectivity,” Cerebral Cortex, vol. 26, no. 3, pp. 1272–1286, 2016.
- R. D. Seidler, J. A. Bernard, T. B. Burutolu, B. W. Fling, M. T. Gordon, J. T. Gwin, Y. Kwak, and D. B. Lipps, “Motor control and aging: links to age-related brain structural, functional, and biochemical effects,” Neuroscience & Biobehavioral Reviews, vol. 34, no. 5, pp. 721–733, 2010.
- J. Zimmermann, P. Ritter, K. Shen, S. Rothmeier, M. Schirner, and A. R. McIntosh, “Structural architecture supports functional organization in the human aging brain at a regionwise and network level,” Human Brain Mapping, vol. 37, no. 7, pp. 2645–2661, 2016.
- A. P. Schultz, J. P. Chhatwal, T. Hedden, E. C. Mormino, B. J. Hanseeuw, J. Sepulcre, W. Huijbers, M. LaPoint, R. F. Buckley, K. A. Johnson et al., “Phases of hyperconnectivity and hypoconnectivity in the default mode and salience networks track with amyloid and tau in clinically normal individuals,” Journal of Neuroscience, vol. 37, no. 16, pp. 4323–4331, 2017.
- A. M. Fjell, M. H. Sneve, H. Grydeland, A. B. Storsve, I. K. Amlien, A. Yendiki, and K. B. Walhovd, “Relationship between structural and functional connectivity change across the adult lifespan: a longitudinal investigation,” Human brain mapping, vol. 38, no. 1, pp. 561–573, 2017.
- E. Centofante, L. Fralleoni, C. A. Lupascu, M. Migliore, A. Rinaldi, and A. Mele, “Specific patterns of neural activity in the hippocampus after massed or distributed spatial training,” Scientific Reports, vol. 13, no. 1, p. 13357, 2023.
- A. M. Lozano, N. Lipsman, H. Bergman, P. Brown, S. Chabardes, J. W. Chang, K. Matthews, C. C. McIntyre, T. E. Schlaepfer, M. Schulder et al., “Deep brain stimulation: current challenges and future directions,” Nature Reviews Neurology, vol. 15, no. 3, pp. 148–160, 2019.
- H. Mestre, Y. Mori, and M. Nedergaard, “The brain’s glymphatic system: current controversies,” Trends in Neurosciences, vol. 43, no. 7, pp. 458–466, 2020.
- M. Lu, X. Wei, Y. Che, J. Wang, and K. A. Loparo, “Application of reinforcement learning to deep brain stimulation in a computational model of Parkinson’s disease,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, no. 1, pp. 339–349, 2019.
- B. Kaltenbacher and W. Rundell, “The inverse problem of reconstructing reaction–diffusion systems,” Inverse Problems, vol. 36, no. 6, p. 065011, 2020.
- J. Adler and O. Öktem, “Solving ill-posed inverse problems using iterative deep neural networks,” Inverse Problems, vol. 33, no. 12, p. 124007, 2017.
- H. Uhlirova, P. Tian, S. Sakadžić, L. Gagnon, M. Thunemann, M. Desjardins, P. A. Saisan, K. Nizar, M. A. Yaseen, D. J. Hagler Jr et al., “The roadmap for estimation of cell-type-specific neuronal activity from non-invasive measurements,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 371, no. 1705, p. 20150356, 2016.
- Q. Liu, S. Farahibozorg, C. Porcaro, N. Wenderoth, and D. Mantini, “Detecting large-scale networks in the human brain using high-density electroencephalography,” Human Brain Mapping, vol. 38, no. 9, pp. 4631–4643, 2017.
- E. Ronzitti, C. Ventalon, M. Canepari, B. C. Forget, E. Papagiakoumou, and V. Emiliani, “Recent advances in patterned photostimulation for optogenetics,” Journal of Optics, vol. 19, no. 11, p. 113001, 2017.
- M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational physics, vol. 378, pp. 686–707, 2019.
- C. Zuo, J. Qian, S. Feng, W. Yin, Y. Li, P. Fan, J. Han, K. Qian, and Q. Chen, “Deep learning in optical metrology: a review,” Light: Science & Applications, vol. 11, no. 1, p. 39, 2022.
- K. J. Bergen, P. A. Johnson, M. V. de Hoop, and G. C. Beroza, “Machine learning for data-driven discovery in solid earth geoscience,” Science, vol. 363, no. 6433, p. eaau0323, 2019.
- G. Zampieri, S. Vijayakumar, E. Yaneske, and C. Angione, “Machine and deep learning meet genome-scale metabolic modeling,” PLoS Computational Biology, vol. 15, no. 7, p. e1007084, 2019.
- G. C. Peng, M. Alber, A. B. Tepole, W. R. Cannon, S. De, S. Dura-Bernal, K. Garikipati, G. Karniadakis, W. W. Lytton, P. Perdikaris et al., “Multiscale modeling meets machine learning: What can we learn?” Archives of Computational Methods in Engineering, pp. 1–21, 2020.
- L. F. Agnati, M. Marcoli, G. Maura, A. Woods, and D. Guidolin, “The brain as a “hyper-network”: the key role of neural networks as main producers of the integrated brain actions especially via the “broadcasted” neuroconnectomics,” Journal of Neural Transmission, vol. 125, no. 6, pp. 883–897, 2018.
- M. Andjelković, B. Tadić, and R. Melnik, “The topology of higher-order complexes associated with brain hubs in human connectomes,” Scientific Reports, vol. 10, no. 17320, pp. 1–10, 2020.
- T. Arendt, “Alzheimer’s disease as a disorder of mechanisms underlying structural brain self-organization,” Neuroscience, vol. 102, no. 4, pp. 723–765, 2001.
- L. Leistritz, K. Schiecke, L. Astolfi, and H. Witte, “Time-variant modeling of brain processes,” Proceedings of the IEEE, vol. 104, no. 2, pp. 262–281, 2015.
- C. Coronel-Oliveros, C. Gießing, V. Medel, R. Cofré, and P. Orio, “Whole-brain modeling explains the context-dependent effects of cholinergic neuromodulation,” NeuroImage, vol. 265, p. 119782, 2023.
- Y.-R. Dai, Y.-K. Wu, X. Chen, Y.-W. Zeng, K. Li, J.-T. Li, Y.-A. Su, L.-L. Zhu, C.-G. Yan, and T.-M. Si, “Eight-week antidepressant treatment changes intrinsic functional brain topology in first-episode drug-naïve patients with major depressive disorder,” Journal of Affective Disorders, vol. 329, pp. 225–234, 2023.
- S. Guo, L. Feng, R. Ding, S. Long, H. Yang, X. Gong, J. Lu, and D. Yao, “Functional gradients in prefrontal regions and somatomotor networks reflect the effect of music training experience on cognitive aging,” Cerebral Cortex, vol. 33, no. 12, pp. 7506–7517, 2023.
- J. R. Cohen and M. D’Esposito, “The segregation and integration of distinct brain networks and their relationship to cognition,” Journal of Neuroscience, vol. 36, no. 48, pp. 12 083–12 094, 2016.
- M. Shinn, A. Hu, L. Turner, S. Noble, K. H. Preller, J. L. Ji, F. Moujaes, S. Achard, D. Scheinost, R. T. Constable et al., “Functional brain networks reflect spatial and temporal autocorrelation,” Nature Neuroscience, pp. 1–12, 2023.
- T. Jin, W. Qi, X. Liang, H. Guo, Q. Liu, and L. Xi, “Photoacoustic imaging of brain functions: Wide filed-of-view functional imaging with high spatiotemporal resolution,” Laser & Photonics Reviews, vol. 16, no. 2, p. 2100304, 2022.
- H. Shaheen, S. Singh, and R. Melnik, “Mathematical modeling of calcium-mediated exosomal dynamics in neural cells,” in Advances in Nonlinear Dynamics: Proceedings of the Second International Nonlinear Dynamics Conference (NODYCON 2021), Volume 3. Springer, 2021, pp. 83–92.
- S. T. Hansen and L. K. Hansen, “Spatio-temporal reconstruction of brain dynamics from eeg with a markov prior,” NeuroImage, vol. 148, pp. 274–283, 2017.
- R. E. Kass, H. Bong, M. Olarinre, Q. Xin, and K. N. Urban, “Identification of interacting neural populations: methods and statistical considerations,” Journal of Neurophysiology, vol. 130, no. 3, pp. 475–496, 2023.
- J. D. Murray, J. Jaramillo, and X.-J. Wang, “Working memory and decision-making in a frontoparietal circuit model,” Journal of Neuroscience, vol. 37, no. 50, pp. 12 167–12 186, 2017.
- J. S. Jiménez, “Macromolecular structures and proteins interacting with the microtubule associated tau protein,” Neuroscience, vol. 518, pp. 70–82, 2023.
- F. Vecchio, F. Miraglia, F. Piludu, G. Granata, R. Romanello, M. Caulo, V. Onofrj, P. Bramanti, C. Colosimo, and P. M. Rossini, ““small world” architecture in brain connectivity and hippocampal volume in Alzheimer’s disease: a study via graph theory from eeg data,” Brain Imaging and Behavior, vol. 11, no. 2, pp. 473–485, 2017.
- D. Yu, S. H. Lee, J. Lim, G. Xiao, R. C. Craddock, and B. B. Biswal, “Fused lasso regression for identifying differential correlations in brain connectome graphs,” Statistical Analysis and Data Mining: The ASA Data Science Journal, vol. 11, no. 5, pp. 203–226, 2018.
- P. Perdikaris, J. A. Insley, L. Grinberg, Y. Yu, M. E. Papka, and G. E. Karniadakis, “Visualizing multiphysics, fluid-structure interaction phenomena in intracranial aneurysms,” Parallel computing, vol. 55, pp. 9–16, 2016.
- J. Han, A. Jentzen, and E. Weinan, “Solving high-dimensional partial differential equations using deep learning,” Proceedings of the National Academy of Sciences, vol. 115, no. 34, pp. 8505–8510, 2018.
- E. Weinan, J. Han, and A. Jentzen, “Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations,” Communications in Mathematics and Statistics, vol. 5, no. 4, pp. 349–380, 2017.
- M. Zitnik, F. Nguyen, B. Wang, J. Leskovec, A. Goldenberg, and M. M. Hoffman, “Machine learning for integrating data in biology and medicine: Principles, practice, and opportunities,” Information Fusion, vol. 50, pp. 71–91, 2019.
- Y. Lu, L. Bi, J. Lian, and H. Li, “Mathematical modeling of eeg signals-based brain-control behavior,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 8, pp. 1535–1543, 2018.
- G. Dumont, A. Payeur, and A. Longtin, “A stochastic-field description of finite-size spiking neural networks,” PLoS Computational Biology, vol. 13, no. 8, p. e1005691, 2017.
- S.-Y. Kim and W. Lim, “Effect of inhibitory spike-timing-dependent plasticity on fast sparsely synchronized rhythms in a small-world neuronal network,” Neural Networks, vol. 106, pp. 50–66, 2018.
- T. K. T. Thieu and R. Melnik, “Coupled effects of channels and synaptic dynamics in stochastic modelling of healthy and parkinson’s-disease-affected brains.” AIMS Bioengineering, vol. 9, no. 2, pp. 213–238, 2022.
- A. A. Linninger, M. Xenos, B. Sweetman, S. Ponkshe, X. Guo, and R. Penn, “A mathematical model of blood, cerebrospinal fluid and brain dynamics,” Journal of mathematical biology, vol. 59, pp. 729–759, 2009.
- M. S. Alavijeh, M. Chishty, M. Z. Qaiser, and A. M. Palmer, “Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery,” NeuroRx, vol. 2, pp. 554–571, 2005.
- B. Pietras, V. Schmutz, and T. Schwalger, “Mesoscopic description of hippocampal replay and metastability in spiking neural networks with short-term plasticity,” PLoS Computational Biology, vol. 18, no. 12, p. e1010809, 2022.
- A. Jimenez-Marin, I. Diez, J. M. Cortes, S. Rodrigues et al., “Metastable resting state brain dynamics,” Frontiers in Computational Neuroscience, vol. 13, p. 62, 2019.
- M. Colonna and O. Butovsky, “Microglia function in the central nervous system during health and neurodegeneration,” Annual Review of Immunology, vol. 35, pp. 441–468, 2017.
- E. Császár, N. Lénárt, C. Cserép, Z. Környei, R. Fekete, B. Pósfai, D. Balázsfi, B. Hangya, A. D. Schwarcz, E. Szabadits et al., “Microglia modulate blood flow, neurovascular coupling, and hypoperfusion via purinergic actions,” Journal of Experimental Medicine, vol. 219, no. 3, 2022.
- R. Kozma and W. J. Freeman, “Cinematic operation of the cerebral cortex interpreted via critical transitions in self-organized dynamic systems,” Frontiers in Systems Neuroscience, p. 10, 2017.
- B. Tadić and R. Melnik, “Self-organised critical dynamics as a key to fundamental features of complexity in physical, biological, and social networks,” Dynamics, vol. 1, no. 2, pp. 181–197, 2021.
- ——, “Fundamental interactions in self-organised critical dynamics on higher order networks,” The European Physical Journal B, vol. 97, no. 6, pp. 1–13, 2024.
- C. I. Bargmann and E. Marder, “From the connectome to brain function,” Nature Methods, vol. 10, no. 6, pp. 483–490, 2013.
- O. Benkarim, C. Paquola, B.-y. Park, J. Royer, R. Rodríguez-Cruces, R. V. de Wael, B. Misic, G. Piella, and B. C. Bernhardt, “A riemannian approach to predicting brain function from the structural connectome,” NeuroImage, vol. 257, p. 119299, 2022.
- M. Winding, B. D. Pedigo, C. L. Barnes, H. G. Patsolic, Y. Park, T. Kazimiers, A. Fushiki, I. V. Andrade, A. Khandelwal, J. Valdes-Aleman et al., “The connectome of an insect brain,” Science, vol. 379, no. 6636, p. eadd9330, 2023.
- S. Larivière, Ş. Bayrak, R. V. de Wael, O. Benkarim, P. Herholz, R. Rodriguez-Cruces, C. Paquola, S.-J. Hong, B. Misic, A. C. Evans et al., “Brainstat: A toolbox for brain-wide statistics and multimodal feature associations,” NeuroImage, vol. 266, p. 119807, 2023.
- Y. Zhang and W. Wang, “Mathematical analysis for stochastic model of Alzheimer’s disease,” Communications in Nonlinear Science and Numerical Simulation, vol. 89, p. 105347, 2020.
- S. Fornari, A. Schäfer, M. Jucker, A. Goriely, and E. Kuhl, “Prion-like spreading of Alzheimer’s disease within the brain’s connectome,” Journal of the Royal Society Interface, vol. 16, no. 159, p. 20190356, 2019.
- S. Fornari, A. Schäfer, E. Kuhl, and A. Goriely, “Spatially-extended nucleation-aggregation-fragmentation models for the dynamics of prion-like neurodegenerative protein-spreading in the brain and its connectome,” Journal of Theoretical Biology, vol. 486, p. 110102, 2020.
- R. Thuraisingham, “A kinetic scheme to examine the role of glial cells in the pathogenesis of Alzheimer’s disease,” Metabolic Brain Disease, vol. 37, no. 3, pp. 801–805, 2022.
- M. L. Bennett and A. N. Viaene, “What are activated and reactive glia and what is their role in neurodegeneration?” Neurobiology of Disease, vol. 148, p. 105172, 2021.
- P. Smethurst, H. Franklin, B. E. Clarke, K. Sidle, and R. Patani, “The role of astrocytes in prion-like mechanisms of neurodegeneration,” Brain, vol. 145, no. 1, pp. 17–26, 2022.
- S. B. Prusiner, “Prions,” Proceedings of the National Academy of Sciences, vol. 95, no. 23, pp. 13 363–13 383, 1998.
- M. Jucker and L. C. Walker, “Self-propagation of pathogenic protein aggregates in neurodegenerative diseases,” Nature, vol. 501, no. 7465, pp. 45–51, 2013.
- M. T. Barros, W. Silva, and C. D. M. Regis, “The multi-scale impact of the Alzheimer’s disease on the topology diversity of astrocytes molecular communications nanonetworks,” IEEE Access, vol. 6, pp. 78 904–78 917, 2018.
- M. Wang, Y. He, T. J. Sejnowski, and X. Yu, “Brain-state dependent astrocytic ca2+ signals are coupled to both positive and negative bold-fmri signals,” Proceedings of the National Academy of Sciences, vol. 115, no. 7, pp. E1647–E1656, 2018.
- D. J. Selkoe and J. Hardy, “The amyloid hypothesis of alzheimer’s disease at 25 years,” EMBO Molecular Medicine, vol. 8, no. 6, pp. 595–608, 2016.
- Y. Buskila, A. Bellot-Saez, and J. W. Morley, “Generating brain waves, the power of astrocytes,” Frontiers in Neuroscience, vol. 13, p. 1125, 2019.
- M. M. Pallitto and R. M. Murphy, “A mathematical model of the kinetics of β𝛽\betaitalic_β-amyloid fibril growth from the denatured state,” Biophysical Journal, vol. 81, no. 3, pp. 1805–1822, 2001.
- M. Bertsch, B. Franchi, N. Marcello, M. C. Tesi, and A. Tosin, “Alzheimer’s disease: a mathematical model for onset and progression,” Mathematical Medicine and Biology: A Journal of the IMA, vol. 34, no. 2, pp. 193–214, 2017.
- S. Pal, H. Shaheen, and R. Melnik, “The influence of amyloid-beta on calcium dynamics in Alzheimer’s disease: A spatio-temporal study. in: Gervasi, o., murgante, b., misra, s., rocha, a.m.a.c., garau, c. (eds) computational science and its applications- ICCSA 2022. Lecture Notes in Computer Science,” in International Conference on Computational Science and Its Applications, vol. 13377. Springer, Cham, 2022, pp. 308–322.
- W. Hao and A. Friedman, “Mathematical model on Alzheimer’s disease,” BMC Systems Biology, vol. 10, no. 1, p. 108, 2016.
- G. Grasso and A. Danani, “Molecular simulations of amyloid beta assemblies,” Advances in Physics: X, vol. 5, no. 1, p. 1770627, 2020.
- I. Kuznetsov and A. Kuznetsov, “How the formation of amyloid plaques and neurofibrillary tangles may be related: a mathematical modelling study,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 474, no. 2210, p. 20170777, 2018.
- A. J. Dear, G. Meisl, T. C. Michaels, M. R. Zimmermann, S. Linse, and T. P. Knowles, “The catalytic nature of protein aggregation,” The Journal of Chemical Physics, vol. 152, no. 4, p. 045101, 2020.
- S. S. VC, R. Ponraj, K. Kiran et al., “Comprehensive strategy for analyzing dementia brain images and generating textual reports through vit, faster r-cnn and gpt-2 integration,” in 2023 First International Conference on Advances in Electrical, Electronics and Computational Intelligence (ICAEECI). IEEE, 2023, pp. 1–10.
- T. Wang, R. G. Qiu, and M. Yu, “Predictive modeling of the progression of alzheimer’s disease with recurrent neural networks,” Scientific reports, vol. 8, no. 1, p. 9161, 2018.
- C. Bowles, L. Chen, R. Guerrero, P. Bentley, R. Gunn, A. Hammers, D. A. Dickie, M. V. Hernández, J. Wardlaw, and D. Rueckert, “Gan augmentation: Augmenting training data using generative adversarial networks,” arXiv preprint arXiv:1810.10863, 2018.
- A. Dragomir, A. G. Vrahatis, and A. Bezerianos, “A network-based perspective in alzheimer’s disease: Current state and an integrative framework,” IEEE journal of biomedical and health informatics, vol. 23, no. 1, pp. 14–25, 2018.
- S. De la Fuente Garcia, C. W. Ritchie, and S. Luz, “Artificial intelligence, speech, and language processing approaches to monitoring alzheimer’s disease: a systematic review,” Journal of Alzheimer’s Disease, vol. 78, no. 4, pp. 1547–1574, 2020.
- A. Monteverdi, F. Palesi, M. Schirner, F. Argentino, M. Merante, A. Redolfi, F. Conca, L. Mazzocchi, S. F. Cappa, M. Cotta Ramusino et al., “Virtual brain simulations reveal network-specific parameters in neurodegenerative dementias,” Frontiers in Aging Neuroscience, vol. 15, p. 1204134, 2023.
- A. Slanzi, G. Iannoto, B. Rossi, E. Zenaro, and G. Constantin, “In vitro models of neurodegenerative diseases,” Frontiers in cell and developmental biology, vol. 8, p. 328, 2020.
- F. Maestú, W. de Haan, M. A. Busche, and J. DeFelipe, “Neuronal excitation/inhibition imbalance: core element of a translational perspective on alzheimer pathophysiology,” Ageing Research Reviews, vol. 69, p. 101372, 2021.
- G. Kashyap, D. Bapat, D. Das, R. Gowaikar, R. Amritkar, G. Rangarajan, V. Ravindranath, and G. Ambika, “Synapse loss and progress of alzheimer’s disease-a network model,” Scientific Reports, vol. 9, no. 1, p. 6555, 2019.
- E. C. Butcher, E. L. Berg, and E. J. Kunkel, “Systems biology in drug discovery,” Nature biotechnology, vol. 22, no. 10, pp. 1253–1259, 2004.
- S. Yang, J. Wang, X. Hao, H. Li, X. Wei, B. Deng, and K. A. Loparo, “Bicoss: toward large-scale cognition brain with multigranular neuromorphic architecture,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 7, pp. 2801–2815, 2021.
- L. P. Argyle, E. C. Busby, N. Fulda, J. R. Gubler, C. Rytting, and D. Wingate, “Out of one, many: Using language models to simulate human samples,” Political Analysis, vol. 31, no. 3, pp. 337–351, 2023.
- H. Shaheen, R. Melnik, and S. Singh, “Analysis of cortical spreading depression in brain with multiscale mathematical models,” in Recent Developments in Mathematical, Statistical and Computational Sciences: The V AMMCS International Conference, Waterloo, Canada, August 18–23, 2019. Springer, 2021, pp. 197–207.
- H. Shaheen, R. Melnik, and T. A. D. N. Initiative, “Bayesian inference and role of astrocytes in amyloid-beta dynamics with modelling of alzheimer’s disease using clinical data,” ArXiv Preprint ArXiv:2306.12520, 2023.
- D. Ajabani, “Predicting alzheimer’s progression in mild cognitive impairment: Longitudinal mri with hmms and svm classifiers,” IJACSA) International Journal of Advanced Computer Science and Applications, vol. 14, no. 12, 2023.
- H. Agha and C. R. McCurdy, “In vitro and in vivo sigma 1 receptor imaging studies in different disease states,” RSC Medicinal Chemistry, vol. 12, no. 2, pp. 154–177, 2021.
- A. Albahri, A. M. Duhaim, M. A. Fadhel, A. Alnoor, N. S. Baqer, L. Alzubaidi, O. Albahri, A. Alamoodi, J. Bai, A. Salhi et al., “A systematic review of trustworthy and explainable artificial intelligence in healthcare: assessment of quality, bias risk, and data fusion,” Information Fusion, 2023.
- J. M. Valera Bermejo, “A multimodal approach to the study of self and others’ awareness in prodromal to mild alzheimer’s disease,” Ph.D. dissertation, University of Sheffield, 2021.
- P.-H. Wei, H. Chen, Q. Ye, H. Zhao, Y. Xu, F. Bai, and A. D. N. Initiative, “Self-reference network-related interactions during the process of cognitive impairment in the early stages of alzheimer’s disease,” Frontiers in Aging Neuroscience, vol. 13, p. 666437, 2021.
- S. Golriz Khatami, C. Robinson, C. Birkenbihl, D. Domingo-Fernández, C. T. Hoyt, and M. Hofmann-Apitius, “Challenges of integrative disease modeling in alzheimer’s disease,” Frontiers in molecular biosciences, vol. 6, p. 158, 2020.
- D. P. Veitch, M. W. Weiner, P. S. Aisen, L. A. Beckett, N. J. Cairns, R. C. Green, D. Harvey, C. R. Jack Jr, W. Jagust, J. C. Morris et al., “Understanding disease progression and improving alzheimer’s disease clinical trials: Recent highlights from the alzheimer’s disease neuroimaging initiative,” Alzheimer’s & Dementia, vol. 15, no. 1, pp. 106–152, 2019.
- E. Bullmore and O. Sporns, “Complex brain networks: graph theoretical analysis of structural and functional systems,” Nature Reviews Neuroscience, vol. 10, no. 3, pp. 186–198, 2009.
- O. Sporns, J. Faskowitz, A. S. Teixeira, S. A. Cutts, and R. F. Betzel, “Dynamic expression of brain functional systems disclosed by fine-scale analysis of edge time series,” Network Neuroscience, vol. 5, no. 2, pp. 405–433, 2021.
- J. M. Shine, M. Breakspear, P. T. Bell, K. A. Ehgoetz Martens, R. Shine, O. Koyejo, O. Sporns, and R. A. Poldrack, “Human cognition involves the dynamic integration of neural activity and neuromodulatory systems,” Nature neuroscience, vol. 22, no. 2, pp. 289–296, 2019.
- M. D. Fox, “Mapping symptoms to brain networks with the human connectome,” New England Journal of Medicine, vol. 379, no. 23, pp. 2237–2245, 2018.
- O. Korhonen, M. Zanin, and D. Papo, “Principles and open questions in functional brain network reconstruction,” Human Brain Mapping, vol. 42, no. 11, pp. 3680–3711, 2021.
- J. M. Shine, E. J. Müller, B. Munn, J. Cabral, R. J. Moran, and M. Breakspear, “Computational models link cellular mechanisms of neuromodulation to large-scale neural dynamics,” Nature Neuroscience, vol. 24, no. 6, pp. 765–776, 2021.
- D. Jones, V. Lowe, J. Graff-Radford, H. Botha, L. Barnard, D. Wiepert, M. Murphy, M. Murray, M. Senjem, J. Gunter et al., “A computational model of neurodegeneration in alzheimer’s disease,” Nature communications, vol. 13, no. 1, p. 1643, 2022.
- I. Sintini, J. Graff-Radford, D. T. Jones, H. Botha, P. R. Martin, M. M. Machulda, C. G. Schwarz, M. L. Senjem, J. L. Gunter, C. R. Jack Jr et al., “Tau and amyloid relationships with resting-state functional connectivity in atypical alzheimer’s disease,” Cerebral cortex, vol. 31, no. 3, pp. 1693–1706, 2021.
- B. A. Hijaz and L. A. Volpicelli-Daley, “Initiation and propagation of α𝛼\alphaitalic_α-synuclein aggregation in the nervous system,” Molecular Neurodegeneration, vol. 15, pp. 1–12, 2020.
- M. Vaz, T. Soares Martins, and A. G. Henriques, “Extracellular vesicles in the study of alzheimer’s and parkinson’s diseases: Methodologies applied from cells to biofluids,” Journal of Neurochemistry, vol. 163, no. 4, pp. 266–309, 2022.
- V. V. Goloborshcheva, K. D. Chaprov, E. V. Teterina, R. Ovchinnikov, and V. L. Buchman, “Reduced complement of dopaminergic neurons in the substantia nigra pars compacta of mice with a constitutive “low footprint” genetic knockout of alpha-synuclein,” Molecular Brain, vol. 13, no. 1, pp. 1–4, 2020.
- M. G. Spillantini, R. A. Crowther, R. Jakes, M. Hasegawa, and M. Goedert, “α𝛼\alphaitalic_α-synuclein in filamentous inclusions of lewy bodies from Parkinson’s disease and dementia with lewy bodies,” Proceedings of the National Academy of Sciences, vol. 95, no. 11, pp. 6469–6473, 1998.
- E. C. Hirsch and S. Hunot, “Neuroinflammation in parkinson’s disease: a target for neuroprotection?” The Lancet Neurology, vol. 8, no. 4, pp. 382–397, 2009.
- A. Bose and M. F. Beal, “Mitochondrial dysfunction in parkinson’s disease,” Journal of Neurochemistry, vol. 139, pp. 216–231, 2016.
- M. Goedert, M. G. Spillantini, K. Del Tredici, and H. Braak, “100 years of lewy pathology,” Nature Reviews Neurology, vol. 9, no. 1, pp. 13–24, 2013.
- C. McKinnon and S. J. Tabrizi, “The ubiquitin-proteasome system in neurodegeneration,” Antioxidants & Redox Signaling, vol. 21, no. 17, pp. 2302–2321, 2014.
- J. R. Testa, M. Cheung, J. Pei, J. E. Below, Y. Tan, E. Sementino, N. J. Cox, A. U. Dogan, H. I. Pass, S. Trusa et al., “Germline bap1 mutations predispose to malignant mesothelioma,” Nature Genetics, vol. 43, no. 10, pp. 1022–1025, 2011.
- H. Yu, T. Sun, J. An, L. Wen, F. Liu, Z. Bu, Y. Cui, and J. Feng, “Potential roles of exosomes in Parkinson’s disease: from pathogenesis, diagnosis, and treatment to prognosis,” Frontiers in Cell and Developmental Biology, vol. 8, p. 86, 2020.
- K. K. Jain, “Neuroprotection in alzheimer disease,” in The Handbook of Neuroprotection. Springer, 2019, pp. 465–585.
- R.-N. Liu and Y.-M. Kang, “Stochastic master equation for early protein aggregation in the transthyretin amyloid disease,” Scientific Reports, vol. 10, no. 1, pp. 1–9, 2020.
- T. C. Vu, J. G. Nutt, and N. H. Holford, “Progression of motor and nonmotor features of parkinson’s disease and their response to treatment,” British journal of clinical pharmacology, vol. 74, no. 2, pp. 267–283, 2012.
- S. Khanna, D. Domingo-Fernández, A. Iyappan, M. A. Emon, M. Hofmann-Apitius, and H. Fröhlich, “Using multi-scale genetic, neuroimaging and clinical data for predicting alzheimer’s disease and reconstruction of relevant biological mechanisms,” Scientific reports, vol. 8, no. 1, p. 11173, 2018.
- G. E. Alexander, “Biology of parkinson’s disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder,” Dialogues in clinical neuroscience, vol. 6, no. 3, pp. 259–280, 2004.
- S. Amartumur, H. Nguyen, T. Huynh, T. S. Kim, R.-S. Woo, E. Oh, K. K. Kim, L. P. Lee, and C. Heo, “Neuropathogenesis-on-chips for neurodegenerative diseases,” Nature Communications, vol. 15, no. 1, p. 2219, 2024.
- A. N. Ahmed, F. B. Othman, H. A. Afan, R. K. Ibrahim, C. M. Fai, M. S. Hossain, M. Ehteram, and A. Elshafie, “Machine learning methods for better water quality prediction,” Journal of Hydrology, vol. 578, p. 124084, 2019.
- K. B. Johnson, W.-Q. Wei, D. Weeraratne, M. E. Frisse, K. Misulis, K. Rhee, J. Zhao, and J. L. Snowdon, “Precision medicine, ai, and the future of personalized health care,” Clinical and translational science, vol. 14, no. 1, pp. 86–93, 2021.
- N. S. Gupta and P. Kumar, “Perspective of artificial intelligence in healthcare data management: A journey towards precision medicine,” Computers in Biology and Medicine, p. 107051, 2023.
- J. Dams, B. Bornschein, J. P. Reese, A. Conrads-Frank, W. H. Oertel, U. Siebert, and R. Dodel, “Modelling the cost effectiveness of treatments for parkinson’s disease: a methodological review,” Pharmacoeconomics, vol. 29, pp. 1025–1049, 2011.
- U. Siebert, O. Alagoz, A. M. Bayoumi, B. Jahn, D. K. Owens, D. J. Cohen, and K. M. Kuntz, “State-transition modeling: a report of the ispor-smdm modeling good research practices task force–3,” Medical Decision Making, vol. 32, no. 5, pp. 690–700, 2012.
- N. Li, J. van den Bergh, A. Boonen, C. Wyers, S. Bours, and M. Hiligsmann, “Cost-effectiveness analysis of fracture liaison services: a markov model using dutch real-world data,” Osteoporosis International, vol. 35, no. 2, pp. 293–307, 2024.
- J. A. Kopec, P. Finès, D. G. Manuel, D. L. Buckeridge, W. M. Flanagan, J. Oderkirk, M. Abrahamowicz, S. Harper, B. Sharif, A. Okhmatovskaia et al., “Validation of population-based disease simulation models: a review of concepts and methods,” BMC public health, vol. 10, pp. 1–13, 2010.
- C. Chiavenna, A. M. Presanis, A. Charlett, S. de Lusignan, S. Ladhani, R. G. Pebody, and D. De Angelis, “Estimating age-stratified influenza-associated invasive pneumococcal disease in england: a time-series model based on population surveillance data,” PLoS Medicine, vol. 16, no. 6, p. e1002829, 2019.
- G. Chowell, L. Sattenspiel, S. Bansal, and C. Viboud, “Mathematical models to characterize early epidemic growth: A review,” Physics of life reviews, vol. 18, pp. 66–97, 2016.
- D. Chen, “Modeling the spread of infectious diseases: A review,” Analyzing and modeling spatial and temporal dynamics of infectious diseases, pp. 19–42, 2014.
- W. Dauer and S. Przedborski, “Parkinson’s disease: mechanisms and models,” Neuron, vol. 39, no. 6, pp. 889–909, 2003.
- M. Deffains and H. Bergman, “Parkinsonism-related β𝛽\betaitalic_β oscillations in the primate basal ganglia networks–recent advances and clinical implications,” Parkinsonism & Related Disorders, vol. 59, pp. 2–8, 2019.
- M. Mamelak, “Parkinson’s disease, the dopaminergic neuron and gammahydroxybutyrate,” Neurology and Therapy, vol. 7, no. 1, pp. 5–11, 2018.
- A. Picca, R. Calvani, H. J. Coelho-Junior, F. Landi, R. Bernabei, and E. Marzetti, “Mitochondrial dysfunction, oxidative stress, and neuroinflammation: Intertwined roads to neurodegeneration,” Antioxidants, vol. 9, no. 8, p. 647, 2020.
- J. M. Tan, E. S. Wong, and K.-L. Lim, “Protein misfolding and aggregation in parkinson’s disease,” Antioxidants & redox signaling, vol. 11, no. 9, pp. 2119–2134, 2009.
- M. Vidović and M. G. Rikalovic, “Alpha-synuclein aggregation pathway in parkinson’s disease: current status and novel therapeutic approaches,” Cells, vol. 11, no. 11, p. 1732, 2022.
- V. R. Muddapu, A. Mandali, V. S. Chakravarthy, and S. Ramaswamy, “A computational model of loss of dopaminergic cells in parkinson’s disease due to glutamate-induced excitotoxicity,” Frontiers in neural circuits, vol. 13, p. 11, 2019.
- H. Shaheen and R. Melnik, “Deep brain stimulation with a computational model for the cortex-thalamus-basal-ganglia system and network dynamics of neurological disorders,” Computational and Mathematical Methods, vol. 2022, pp. Article ID 8 998 150, 17, 2022.
- T. R. Barber, J. C. Klein, C. E. Mackay, and M. T. Hu, “Neuroimaging in pre-motor parkinson’s disease,” NeuroImage: Clinical, vol. 15, pp. 215–227, 2017.
- A. A. Leao, “Spreading depression of activity in the cerebral cortex,” Journal of Neurophysiology, vol. 7, no. 6, pp. 359–390, 1944.
- L. Gerardo-Giorda and J. M. Kroos, “A computational multiscale model of cortical spreading depression propagation,” Computers & Mathematics with Applications, vol. 74, no. 5, pp. 1076–1090, 2017.
- O. Cozzolino, M. Marchese, F. Trovato, E. Pracucci, G. M. Ratto, M. G. Buzzi, F. Sicca, and F. M. Santorelli, “Understanding spreading depression from headache to sudden unexpected death,” Frontiers in Neurology, vol. 9, p. 19, 2018.
- A. Chamanzar, S. George, P. Venkatesh, M. Chamanzar, L. Shutter, J. Elmer, and P. Grover, “An algorithm for automated, noninvasive detection of cortical spreading depolarizations based on eeg simulations,” IEEE Transactions on Biomedical Engineering, vol. 66, no. 4, pp. 1115–1126, 2018.
- H. C. Tuckwell, “Stochastic modeling of spreading cortical depression,” in Stochastic Biomathematical Models. Springer, 2013, pp. 187–200.
- H. C. Tuckwell and C. L. Hermansen, “Ion and transmitter movements during spreading cortical depression,” International Journal of Neuroscience, vol. 12, no. 2, pp. 109–135, 1981.
- J. C. Chang, K. C. Brennan, D. He, H. Huang, R. M. Miura, P. L. Wilson, and J. J. Wylie, “A mathematical model of the metabolic and perfusion effects on cortical spreading depression,” Plos One, vol. 8, no. 8, p. e70469, 2013.
- R. S. Duman and G. K. Aghajanian, “Synaptic dysfunction in depression: potential therapeutic targets,” Science, vol. 338, no. 6103, pp. 68–72, 2012.
- A. J. Ellingsrud, D. B. Dukefoss, R. Enger, G. Halnes, K. Pettersen, and M. E. Rognes, “Validating a computational framework for ionic electrodiffusion with cortical spreading depression as a case study,” Eneuro, vol. 9, no. 2, 2022.
- H. Huang, R. M. Miura, and W. Yao, “A simplified neuronal model for the instigation and propagation of cortical spreading depression,” Advances in Applied Mathematics and Mechanics, vol. 3, no. 6, pp. 759–773, 2011.
- H. Kager, W. Wadman, and G. Somjen, “Conditions for the triggering of spreading depression studied with computer simulations,” Journal of Neurophysiology, vol. 88, no. 5, pp. 2700–2712, 2002.
- B. E. Shapiro, “Osmotic forces and gap junctions in spreading depression: a computational model,” Journal of Computational Neuroscience, vol. 10, no. 1, pp. 99–120, 2001.
- R. Shukla, D. F. Newton, A. Sumitomo, H. Zare, R. Mccullumsmith, D. A. Lewis, T. Tomoda, and E. Sibille, “Molecular characterization of depression trait and state,” Molecular psychiatry, vol. 27, no. 2, pp. 1083–1094, 2022.
- J. M. Kroos, I. Marinelli, I. Diez, J. M. Cortes, S. Stramaglia, and L. Gerardo-Giorda, “Patient-specific computational modeling of cortical spreading depression via diffusion tensor imaging,” International journal for numerical methods in biomedical engineering, vol. 33, no. 11, p. e2874, 2017.
- M. Rovegno and J. C. Saez, “Role of astrocyte connexin hemichannels in cortical spreading depression,” Biochimica et Biophysica Acta (BBA)-Biomembranes, vol. 1860, no. 1, pp. 216–223, 2018.
- M. J. Sætra, G. T. Einevoll, and G. Halnes, “An electrodiffusive neuron-extracellular-glia model for exploring the genesis of slow potentials in the brain,” PLoS Computational Biology, vol. 17, no. 7, p. e1008143, 2021.
- S. Xu, J. C. Chang, C. C. Chow, K. C. Brennan, and H. Huang, “A mathematical model for persistent post-csd vasoconstriction,” PLoS computational biology, vol. 16, no. 7, p. e1007996, 2020.
- L. Reshodko and J. Bureš, “Computer simulation of reverberating spreading depression in a network of cell automata,” Biological cybernetics, vol. 18, no. 3, pp. 181–189, 1975.
- K. H. Pettersen, H. Lindén, A. M. Dale, and G. T. Einevoll, “Extracellular spikes and csd,” Handbook of neural activity measurement, vol. 1, pp. 92–135, 2012.
- M. Desroches, O. Faugeras, M. Krupa, and M. Mantegazza, “Modeling cortical spreading depression induced by the hyperactivity of interneurons,” Journal of Computational Neuroscience, vol. 47, no. 2, pp. 125–140, 2019.
- C. De Luca, A. M. Colangelo, A. Virtuoso, L. Alberghina, and M. Papa, “Neurons, glia, extracellular matrix and neurovascular unit: a systems biology approach to the complexity of synaptic plasticity in health and disease,” International journal of molecular sciences, vol. 21, no. 4, p. 1539, 2020.
- D. Plenz, T. L. Ribeiro, S. R. Miller, P. A. Kells, A. Vakili, and E. L. Capek, “Self-organized criticality in the brain,” Frontiers in Physics, vol. 9, p. 639389, 2021.
- K. Sun, J. Chen, and X. Yan, “The future of memristors: Materials engineering and neural networks,” Advanced Functional Materials, vol. 31, no. 8, p. 2006773, 2021.
- W. Chaisangmongkon, S. K. Swaminathan, D. J. Freedman, and X.-J. Wang, “Computing by robust transience: how the fronto-parietal network performs sequential, category-based decisions,” Neuron, vol. 93, no. 6, pp. 1504–1517, 2017.
- G. T. Einevoll, C. Kayser, N. K. Logothetis, and S. Panzeri, “Modelling and analysis of local field potentials for studying the function of cortical circuits,” Nature Reviews Neuroscience, vol. 14, no. 11, pp. 770–785, 2013.
- T. Oyetunde, F. S. Bao, J.-W. Chen, H. G. Martin, and Y. J. Tang, “Leveraging knowledge engineering and machine learning for microbial bio-manufacturing,” Biotechnology advances, vol. 36, no. 4, pp. 1308–1315, 2018.
- N. J. Michelson, A. L. Vazquez, J. R. Eles, J. W. Salatino, E. K. Purcell, J. J. Williams, X. T. Cui, and T. D. Kozai, “Multi-scale, multi-modal analysis uncovers complex relationship at the brain tissue-implant neural interface: new emphasis on the biological interface,” Journal of neural engineering, vol. 15, no. 3, p. 033001, 2018.
- C. L. Nwagbo and E. C. Genevra, “Review of neuronal multiplexers with back propagation algorithm,” IEEE-SEM, vol. 2, 2024.
- T. Dhollander, A. Clemente, M. Singh, F. Boonstra, O. Civier, J. D. Duque, N. Egorova, P. Enticott, I. Fuelscher, S. Gajamange et al., “Fixel-based analysis of diffusion mri: methods, applications, challenges and opportunities,” Neuroimage, vol. 241, p. 118417, 2021.
- L. Al-Hassany, J. Haas, M. Piccininni, T. Kurth, A. Maassen Van Den Brink, and J. L. Rohmann, “Giving researchers a headache–sex and gender differences in migraine,” Frontiers in neurology, vol. 11, p. 549038, 2020.
- H. Hampel, N. Toschi, C. Babiloni, F. Baldacci, K. L. Black, A. L. Bokde, R. S. Bun, F. Cacciola, E. Cavedo, P. A. Chiesa et al., “Revolution of alzheimer precision neurology. passageway of systems biology and neurophysiology,” Journal of Alzheimer’s Disease, vol. 64, no. s1, pp. S47–S105, 2018.
- G. Sanacora, Z. Yan, and M. Popoli, “The stressed synapse 2.0: pathophysiological mechanisms in stress-related neuropsychiatric disorders,” Nature Reviews Neuroscience, vol. 23, no. 2, pp. 86–103, 2022.
- A. Torres-Berrío, D. Nouel, S. Cuesta, E. M. Parise, J. M. Restrepo-Lozano, P. Larochelle, E. J. Nestler, and C. Flores, “Mir-218: a molecular switch and potential biomarker of susceptibility to stress,” Molecular psychiatry, vol. 25, no. 5, pp. 951–964, 2020.
- A. Devor, D. A. Boas, G. T. Einevoll, R. B. Buxton, and A. M. Dale, “Neuronal basis of non-invasive functional imaging: from microscopic neurovascular dynamics to bold fmri,” Neural metabolism in vivo, pp. 433–500, 2012.
- J. Poort, M. W. Self, B. Van Vugt, H. Malkki, and P. R. Roelfsema, “Texture segregation causes early figure enhancement and later ground suppression in areas v1 and v4 of visual cortex,” Cerebral cortex, vol. 26, no. 10, pp. 3964–3976, 2016.
- H. S. R. Rajula, G. Verlato, M. Manchia, N. Antonucci, and V. Fanos, “Comparison of conventional statistical methods with machine learning in medicine: diagnosis, drug development, and treatment,” Medicina, vol. 56, no. 9, p. 455, 2020.
- K. Alstadhaug, “Periodicity of migraine,” Migraine Disorders Research Trends. New York, NY: Nova Science, pp. 107–44, 2007.
- A. Mubayi, C. Kribs, V. Arunachalam, and C. Castillo-Chavez, “Studying complexity and risk through stochastic population dynamics: Persistence, resonance, and extinction in ecosystems,” in Handbook of Statistics. Elsevier, 2019, vol. 40, pp. 157–193.
- S. Ball, “Stochastic models of ion channels,” Ph.D. dissertation, University of Nottingham, 2000.
- A. de Cheveigné and L. C. Parra, “Joint decorrelation, a versatile tool for multichannel data analysis,” Neuroimage, vol. 98, pp. 487–505, 2014.
- P. Cipresso, F. Borghesi, and A. Chirico, “Affects affect affects: A markov chain,” Frontiers in Psychology, vol. 14, p. 1162655, 2023.
- J. Sevigny, P. Chiao, T. Bussière, P. H. Weinreb, L. Williams, M. Maier, R. Dunstan, S. Salloway, T. Chen, Y. Ling et al., “The antibody aducanumab reduces aβ𝛽\betaitalic_β plaques in Alzheimer’s disease,” Nature, vol. 537, no. 7618, pp. 50–56, 2016.
- K. M. Merchant, J. M. Cedarbaum, P. Brundin, K. D. Dave, J. Eberling, A. J. Espay, S. J. Hutten, M. Javidnia, J. Luthman, W. Maetzler et al., “A proposed roadmap for Parkinson’s disease proof of concept clinical trials investigating compounds targeting alpha-synuclein,” Journal of Parkinson’s Disease, vol. 9, no. 1, pp. 31–61, 2019.
- M. Corti, F. Bonizzoni, and P. F. Antonietti, “Structure preserving polytopal discontinuous galerkin methods for the numerical modeling of neurodegenerative diseases,” Journal of Scientific Computing, vol. 100, no. 2, p. 39, 2024.
- C. Hadjichrysanthou, A. K. Ower, F. de Wolf, R. M. Anderson, and A. D. N. Initiative, “The development of a stochastic mathematical model of Alzheimer’s disease to help improve the design of clinical trials of potential treatments,” Plos One, vol. 13, no. 1, p. e0190615, 2018.
- G. B. Frisoni, D. Altomare, D. R. Thal, F. Ribaldi, R. van der Kant, R. Ossenkoppele, K. Blennow, J. Cummings, C. van Duijn, P. M. Nilsson et al., “The probabilistic model of alzheimer disease: the amyloid hypothesis revised,” Nature Reviews Neuroscience, vol. 23, no. 1, pp. 53–66, 2022.
- D. L. Yamins and J. J. DiCarlo, “Using goal-driven deep learning models to understand sensory cortex,” Nature Neuroscience, vol. 19, no. 3, pp. 356–365, 2016.
- N. Kriegeskorte, “Deep neural networks: a new framework for modeling biological vision and brain information processing,” Annual Review of Vision Science, vol. 1, pp. 417–446, 2015.
- D. Sussillo and L. F. Abbott, “Generating coherent patterns of activity from chaotic neural networks,” Neuron, vol. 63, no. 4, pp. 544–557, 2009.
- O. Barak, D. Sussillo, R. Romo, M. Tsodyks, and L. Abbott, “From fixed points to chaos: three models of delayed discrimination,” Progress in Neurobiology, vol. 103, pp. 214–222, 2013.
- G. R. Yang and X.-J. Wang, “Artificial neural networks for neuroscientists: A primer,” Neuron, vol. 107, no. 6, pp. 1048–1070, 2020.
- A. A. Lima, M. F. Mridha, S. C. Das, M. M. Kabir, M. R. Islam, and Y. Watanobe, “A comprehensive survey on the detection, classification, and challenges of neurological disorders,” Biology, vol. 11, no. 3, p. 469, 2022.
- D. Sarishma, S. Sangwan, R. Tomar, and R. Srivastava, “A review on cognitive computational neuroscience: overview, models, and applications,” Innovative Trends in Computational Intelligence, pp. 217–234, 2022.
- S. Battaglia and J. F. Thayer, “Functional interplay between central and autonomic nervous systems in human fear conditioning,” Trends in Neurosciences, 2022.
- S. Wang, T. H. Cheng, and M. H. Lim, “A hierarchical taxonomic survey of spiking neural networks,” Memetic Computing, vol. 14, no. 3, pp. 335–354, 2022.
- T. Bihl, W. A. Young II, A. Moyer, and S. Frimel, “Artificial neural networks and data science,” in Encyclopedia of Data Science and Machine Learning. IGI Global, 2023, pp. 899–921.
- I. A. Thukroo, R. Bashir, and K. J. Giri, “A review into deep learning techniques for spoken language identification,” Multimedia Tools and Applications, vol. 81, no. 22, pp. 32 593–32 624, 2022.
- I. Ghebrehiwet, N. Zaki, R. Damseh, and M. S. Mohamad, “Revolutionizing personalized medicine with generative ai: a systematic review,” Artificial Intelligence Review, vol. 57, no. 5, pp. 1–41, 2024.
- J. F. Storm, P. C. Klink, J. Aru, W. Senn, R. Goebel, A. Pigorini, P. Avanzini, W. Vanduffel, P. R. Roelfsema, M. Massimini et al., “An integrative, multiscale view on neural theories of consciousness,” Neuron, vol. 112, no. 10, pp. 1531–1552, 2024.
- Y. Liang, S. Li, C. Yan, M. Li, and C. Jiang, “Explaining the black-box model: A survey of local interpretation methods for deep neural networks,” Neurocomputing, vol. 419, pp. 168–182, 2021.
- I. A. Basheer and M. Hajmeer, “Artificial neural networks: fundamentals, computing, design, and application,” Journal of microbiological methods, vol. 43, no. 1, pp. 3–31, 2000.
- L. L. Raket, “Statistical disease progression modeling in Alzheimer’s disease,” Frontiers in Big Data, vol. 3, p. 24, 2020.
- F. Davenport, J. Gallacher, Z. Kourtzi, I. Koychev, P. M. Matthews, N. P. Oxtoby, L. M. Parkes, V. Priesemann, J. B. Rowe, S. W. Smye et al., “Neurodegenerative disease of the brain: a survey of interdisciplinary approaches,” Journal of the Royal Society Interface, vol. 20, no. 198, p. 20220406, 2023.
- S. Adhikari, S. Thapa, U. Naseem, P. Singh, H. Huo, G. Bharathy, and M. Prasad, “Exploiting linguistic information from nepali transcripts for early detection of alzheimer’s disease using natural language processing and machine learning techniques,” International Journal of Human-Computer Studies, vol. 160, p. 102761, 2022.
- M. P. Van Den Heuvel, C. J. Stam, R. S. Kahn, and H. E. H. Pol, “Efficiency of functional brain networks and intellectual performance,” Journal of Neuroscience, vol. 29, no. 23, pp. 7619–7624, 2009.
- F. Farzan, A. Pascual-Leone, J. D. Schmahmann, and M. Halko, “Enhancing the temporal complexity of distributed brain networks with patterned cerebellar stimulation,” Scientific Reports, vol. 6, no. 1, pp. 1–9, 2016.
- T. Ito, L. Hearne, R. Mill, C. Cocuzza, and M. W. Cole, “Discovering the computational relevance of brain network organization,” Trends in Cognitive Sciences, vol. 24, no. 1, pp. 25–38, 2020.
- J. Dubois, P. Galdi, L. K. Paul, and R. Adolphs, “A distributed brain network predicts general intelligence from resting-state human neuroimaging data,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 373, no. 1756, p. 20170284, 2018.
- B.-J. Li, K. Friston, M. Mody, H.-N. Wang, H.-B. Lu, and D.-W. Hu, “A brain network model for depression: From symptom understanding to disease intervention,” CNS Neuroscience & Therapeutics, vol. 24, no. 11, pp. 1004–1019, 2018.
- G. Feng, Z. Gan, F. Llanos, D. Meng, S. Wang, P. C. Wong, and B. Chandrasekaran, “A distributed dynamic brain network mediates linguistic tone representation and categorization,” NeuroImage, vol. 224, p. 117410, 2021.
- Y. Xu, S. Kohtz, J. Boakye, P. Gardoni, and P. Wang, “Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges,” Reliability Engineering & System Safety, p. 108900, 2022.
- M. Nabati and S. A. Ghorashi, “A real-time fingerprint-based indoor positioning using deep learning and preceding states,” Expert Systems with Applications, vol. 213, p. 118889, 2023.
- A. Whittington, D. J. Sharp, and R. N. Gunn, “Spatiotemporal distribution of β𝛽\betaitalic_β-amyloid in Alzheimer disease is the result of heterogeneous regional carrying capacities,” Journal of Nuclear Medicine, vol. 59, no. 5, pp. 822–827, 2018.
- G. T. Chen and D. H. Geschwind, “Challenges and opportunities for precision medicine in neurodevelopmental disorders,” Advanced Drug Delivery Reviews, p. 114564, 2022.
- A. Bender and I. Cortés-Ciriano, “Artificial intelligence in drug discovery: what is realistic, what are illusions? part 1: ways to make an impact, and why we are not there yet,” Drug Discovery Today, vol. 26, no. 2, pp. 511–524, 2021.
- K. Ding, A. Dragomir, R. Bose, L. E. Osborn, M. S. Seet, A. Bezerianos, and N. V. Thakor, “Towards machine to brain interfaces: Sensory stimulation enhances sensorimotor dynamic functional connectivity in upper limb amputees,” Journal of Neural Engineering,, vol. 17, no. 3, p. 035002, 2020.
- A. Niarakis, D. Waltemath, J. Glazier, F. Schreiber, S. M. Keating, D. Nickerson, C. Chaouiya, A. Siegel, V. Noël, H. Hermjakob et al., “Addressing barriers in comprehensiveness, accessibility, reusability, interoperability and reproducibility of computational models in systems biology,” Briefings in Bioinformatics, vol. 23, no. 4, p. bbac212, 2022.
- A. Schäfer, M. Peirlinck, K. Linka, E. Kuhl, Alzheimer’s Disease Neuroimaging Initiative (ADNI et al., “Bayesian physics-based modeling of tau propagation in Alzheimer’s disease,” Frontiers in Physiology, p. 1081, 2021.
- M. Bilgel, B. M. Jedynak, Alzheimer’s Disease Neuroimaging Initiative et al., “Predicting time to dementia using a quantitative template of disease progression,” Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, vol. 11, pp. 205–215, 2019.
- M. M. Ghazi, M. Nielsen, A. Pai, M. Modat, M. J. Cardoso, S. Ourselin, and L. Sørensen, “Robust parametric modeling of Alzheimer’s disease progression,” NeuroImage, vol. 225, p. 117460, 2021.
- M. A. Beaumont, “Approximate bayesian computation,” Annual Review of Statistics and its Application, vol. 6, pp. 379–403, 2019.
- J. D. Christopher, N. T. Wimer, C. Lapointe, T. R. Hayden, I. Grooms, G. B. Rieker, and P. E. Hamlington, “Parameter estimation for complex thermal-fluid flows using approximate bayesian computation,” Physical Review Fluids, vol. 3, no. 10, p. 104602, 2018.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.