Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

Decoupling of a supermassive black hole binary from its magnetically arrested circumbinary accretion disk (2410.23264v1)

Published 30 Oct 2024 in astro-ph.HE, astro-ph.GA, and gr-qc

Abstract: Merging supermassive black hole (SMBH) binaries will likely be surrounded by a circumbinary accretion disk. Close to merger, gravitational radiation-driven inspiral will happen on timescales faster than the effective viscous time at the disk cavity wall, leading to a decoupling of the inner binary dynamics from the surrounding gaseous environment. Here we perform the first simulation of this decoupling process from a magnetically arrested circumbinary accretion disk. In this regime, the central cavity is filled with very strong vertical magnetic flux, regulating accretion onto the binary. Our simulations identify three main stages of this process: (1) Large-scale magnetic flux loss prior to decoupling. (2) Rayleigh-Taylor-driven accretion streams onto the binary during and after decoupling, which can power magnetic tower-like outflows, resembling dual jets. (3) Post merger, the cavity wall becomes unstable and the magnetic flux trapped inside the cavity will get ejected in large coherent outbreak episodes with implications for potential multi-messenger transients to merging SMBH binaries.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. G. Agazie et al. (NANOGrav), The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background, Astrophys. J. Lett. 951, L8 (2023), arXiv:2306.16213 [astro-ph.HE] .
  2. T. Bogdanovic, M. C. Miller, and L. Blecha, Electromagnetic counterparts to massive black-hole mergers, Living Rev. Rel. 25, 3 (2022), arXiv:2109.03262 [astro-ph.HE] .
  3. P. A. Seoane et al. (LISA), Astrophysics with the Laser Interferometer Space Antenna, Living Rev. Rel. 26, 2 (2023), arXiv:2203.06016 [gr-qc] .
  4. M. C. Begelman, R. D. Blandford, and M. J. Rees, Massive black hole binaries in active galactic nuclei, Nature 287, 307 (1980).
  5. D. Lai and D. J. Muñoz, Circumbinary Accretion: From Binary Stars to Massive Binary Black Holes,  (2022), arXiv:2211.00028 [astro-ph.HE] .
  6. P. Artymowicz and S. H. Lubow, Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes, Astrophys. J. 421, 651 (1994).
  7. P. Artymowicz and S. H. Lubow, Mass Flow through Gaps in Circumbinary Disks, Astrophys. J. Lett. 467, L77 (1996).
  8. P. C. Peters, Gravitational Radiation and the Motion of Two Point Masses, Phys. Rev. 136, B1224 (1964).
  9. P. J. Armitage and P. Natarajan, Accretion during the Merger of Supermassive Black Holes, ApJL 567, L9 (2002), arXiv:astro-ph/0201318 [astro-ph] .
  10. A. J. Dittmann, G. Ryan, and M. C. Miller, The Decoupling of Binaries from Their Circumbinary Disks, ApJL 949, L30 (2023), arXiv:2303.16204 [astro-ph.HE] .
  11. F. K. Liu, X.-B. Wu, and S. L. Cao, Double-double radio galaxies: remnants of merged supermassive binary black holes, MNRAS 340, 411 (2003), arXiv:astro-ph/0310045 [astro-ph] .
  12. M. Milosavljević and E. S. Phinney, The Afterglow of Massive Black Hole Coalescence, ApJL 622, L93 (2005), arXiv:astro-ph/0410343 [astro-ph] .
  13. E. R. Most and H.-Y. Wang, Magnetically Arrested Circumbinary Accretion Flows, Astrophys. J. Lett. 973, L19 (2024), arXiv:2408.00757 [astro-ph.HE] .
  14. C. Palenzuela, L. Lehner, and S. Yoshida, Understanding possible electromagnetic counterparts to loud gravitational wave events: Binary black hole effects on electromagnetic fields, Phys. Rev. D 81, 084007 (2010a), arXiv:0911.3889 [gr-qc] .
  15. C. Palenzuela, L. Lehner, and S. L. Liebling, Dual Jets from Binary Black Holes, Science 329, 927 (2010b), arXiv:1005.1067 [astro-ph.HE] .
  16. E. R. Most and A. A. Philippov, Electromagnetic precursors to gravitational wave events: Numerical simulations of flaring in pre-merger binary neutron star magnetospheres, Astrophys. J. Lett. 893, L6 (2020), arXiv:2001.06037 [astro-ph.HE] .
  17. E. R. Most and A. A. Philippov, Reconnection-Powered Fast Radio Transients from Coalescing Neutron Star Binaries, Phys. Rev. Lett. 130, 245201 (2023a), arXiv:2207.14435 [astro-ph.HE] .
  18. E. R. Most and A. A. Philippov, Electromagnetic precursor flares from the late inspiral of neutron star binaries, Mon. Not. Roy. Astron. Soc. 515, 2710 (2022), arXiv:2205.09643 [astro-ph.HE] .
  19. E. R. Most and A. A. Philippov, Electromagnetic Precursors to Black Hole–Neutron Star Gravitational Wave Events: Flares and Reconnection-powered Fast Radio Transients from the Late Inspiral, Astrophys. J. Lett. 956, L33 (2023b), arXiv:2309.04271 [astro-ph.HE] .
  20. B. D. Farris, Y. T. Liu, and S. L. Shapiro, Binary black hole mergers in gaseous disks: Simulations in general relativity, PhRvD 84, 024024 (2011), arXiv:1105.2821 [astro-ph.HE] .
  21. R. Narayan, I. V. Igumenshchev, and M. A. Abramowicz, Magnetically Arrested Disk: an Energetically Efficient Accretion Flow, PASJ 55, L69 (2003), arXiv:astro-ph/0305029 [astro-ph] .
  22. I. V. Igumenshchev, Magnetically Arrested Disks and Origin of Poynting Jets: Numerical Study, Astrophys. J. 677, 317 (2008), arXiv:0711.4391 [astro-ph] .
  23. A. Tchekhovskoy, R. Narayan, and J. C. McKinney, Efficient Generation of Jets from Magnetically Arrested Accretion on a Rapidly Spinning Black Hole, Mon. Not. Roy. Astron. Soc. 418, L79 (2011), arXiv:1108.0412 [astro-ph.HE] .
  24. H. C. Plummer, On the problem of distribution in globular star clusters, MNRAS 71, 460 (1911).
  25. M. N. Lemaster and J. M. Stone, Dissipation and Heating in Supersonic Hydrodynamic and MHD Turbulence, Astrophys. J. 691, 1092 (2009), arXiv:0809.4005 [astro-ph] .
  26. P. C. Peters, Gravitational Radiation and the Motion of Two Point Masses, Physical Review 136, 1224 (1964).
  27. H. C. Spruit, R. Stehle, and J. C. B. Papaloizou, Interchange instability in an accretion disc with a poloidal magnetic field, Mon. Not. Roy. Astron. Soc. 275, 1223 (1995), arXiv:astro-ph/9504043 .
  28. A. K. Kulkarni and M. M. Romanova, Accretion to Magnetized Stars through the Rayleigh-Taylor Instability: Global Three-Dimensional Simulations, Mon. Not. Roy. Astron. Soc. 386, 673 (2008), arXiv:0802.1759 [astro-ph] .
  29. K. Chatterjee and R. Narayan, Flux Eruption Events Drive Angular Momentum Transport in Magnetically Arrested Accretion Flows, ApJ 941, 30 (2022), arXiv:2210.08045 [astro-ph.HE] .
  30. M. C. Begelman, N. Scepi, and J. Dexter, What really makes an accretion disc MAD, Mon. Not. Roy. Astron. Soc. 511, 2040 (2022), arXiv:2111.02439 [astro-ph.HE] .
  31. R. Miranda and D. Lai, Tidal truncation of inclined circumstellar and circumbinary discs in young stellar binaries, MNRAS 452, 2396 (2015), arXiv:1504.02917 [astro-ph.EP] .
  32. H.-Y. Wang, E. R. Most, and P. F. Hopkins, Magnetic Mastery: When Circumbinary Accretion Flows around Supermassive Black Holes go MAD (in prep),   (2024).
  33. V. Zhdankin, B. Ripperda, and A. A. Philippov, Particle acceleration by magnetic Rayleigh-Taylor instability: Mechanism for flares in black hole accretion flows, Phys. Rev. Res. 5, 043023 (2023), arXiv:2302.05276 [astro-ph.HE] .
  34. J. Dexter et al., Sgr A* near-infrared flares from reconnection events in a magnetically arrested disc, Mon. Not. Roy. Astron. Soc. 497, 4999 (2020), arXiv:2006.03657 [astro-ph.HE] .
  35. D. Lynden-Bell, On Why disks generate magnetic towers and collimate jets, Mon. Not. Roy. Astron. Soc. 341, 1360 (2003), arXiv:astro-ph/0208388 .
  36. Y. Kim and E. R. Most, General-relativistic Bondi-Hoyle-Lyttleton accretion in a toroidally magnetized medium,   (2024), arXiv:2409.12359 [astro-ph.HE] .
  37. C. Musolino, L. Rezzolla, and E. R. Most, On the impact of neutrinos on the launching of relativistic jets from ”magnetars” produced in neutron-star mergers,   (2024), arXiv:2410.06253 [astro-ph.HE] .
  38. J. C. Bright and V. Paschalidis, Minidisc influence on flow variability in accreting spinning black hole binaries: simulations in full general relativity, Mon. Not. Roy. Astron. Soc. 520, 392 (2023), arXiv:2210.15686 [astro-ph.HE] .
  39. B. Ripperda, F. Bacchini, and A. Philippov, Magnetic Reconnection and Hot Spot Formation in Black Hole Accretion Disks, Astrophys. J. 900, 100 (2020), arXiv:2003.04330 [astro-ph.HE] .
  40. D. A. Uzdensky, B. Cerutti, and M. C. Begelman, Reconnection-Powered Linear Accelerator and Gamma-Ray Flares in the Crab Nebula, Astrophys. J. Lett. 737, L40 (2011), arXiv:1105.0942 [astro-ph.HE] .
  41. L. Sironi and A. Spitkovsky, Relativistic Reconnection: an Efficient Source of Non-Thermal Particles, Astrophys. J. Lett. 783, L21 (2014), arXiv:1401.5471 [astro-ph.HE] .
  42. H. Hakobyan, B. Ripperda, and A. Philippov, Radiative Reconnection-powered TeV Flares from the Black Hole Magnetosphere in M87, Astrophys. J. Lett. 943, L29 (2023), arXiv:2209.02105 [astro-ph.HE] .
  43. L. Combi and S. M. Ressler, A binary black hole metric approximation from inspiral to merger,   (2024), arXiv:2403.13308 [gr-qc] .
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com