Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 163 tok/s Pro
2000 character limit reached

Fractal random sets associated with multitype Galton-Watson trees (2410.21847v1)

Published 29 Oct 2024 in math.PR

Abstract: In this paper, we consider a regular tessellation of the Euclidean plane and the sequence of its geometric scalings by negative powers of a fixed integer. We generate iteratively random sets as the union of adjacent tiles from these rescaled tessellations. We encode this geometric construction into a combinatorial object, namely a multitype Galton-Watson tree. Our main result concerns the geometric properties of the limiting planar set. In particular, we show that both box and Hausdorff dimensions coincide and we calculate them in function of the spectral radius of the reproduction matrix associated with this branching process. We then make that spectral radius explicit in several concrete examples when the regular tessellation is either hexagonal, square or triangular.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.