Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

PepDoRA: A Unified Peptide Language Model via Weight-Decomposed Low-Rank Adaptation (2410.20667v1)

Published 28 Oct 2024 in q-bio.BM

Abstract: Peptide therapeutics, including macrocycles, peptide inhibitors, and bioactive linear peptides, play a crucial role in therapeutic development due to their unique physicochemical properties. However, predicting these properties remains challenging. While structure-based models primarily focus on local interactions, LLMs are capable of capturing global therapeutic properties of both modified and linear peptides. Protein LLMs like ESM-2, though effective for natural peptides, cannot however encode chemical modifications. Conversely, pre-trained chemical LLMs excel in representing small molecule properties but are not optimized for peptides. To bridge this gap, we introduce PepDoRA, a unified peptide representation model. Leveraging Weight-Decomposed Low-Rank Adaptation (DoRA), PepDoRA efficiently fine-tunes the ChemBERTa-77M-MLM on a masked LLM objective to generate optimized embeddings for downstream property prediction tasks involving both modified and unmodified peptides. By tuning on a diverse and experimentally valid set of 100,000 modified, bioactive, and binding peptides, we show that PepDoRA embeddings capture functional properties of input peptides, enabling the accurate prediction of membrane permeability, non-fouling and hemolysis propensity, and via contrastive learning, target protein-specific binding. Overall, by providing a unified representation for chemically and biologically diverse peptides, PepDoRA serves as a versatile tool for function and activity prediction, facilitating the development of peptide therapeutics across a broad spectrum of applications.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube