Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterization of $n$-Dimensional Toric and Burst-Error-Correcting Quantum Codes from Lattice Codes (2410.20233v1)

Published 26 Oct 2024 in cs.IT, math.CO, math.IT, and quant-ph

Abstract: Quantum error correction is essential for the development of any scalable quantum computer. In this work we introduce a generalization of a quantum interleaving method for combating clusters of errors in toric quantum error-correcting codes. We present new $n$-dimensional toric quantum codes, where $n\geq 5$, which are featured by lattice codes and apply the proposed quantum interleaving method to such new $n$-dimensional toric quantum codes. Through the application of this method to these novel $n$-dimensional toric quantum codes we derive new $n$-dimensional quantum burst-error-correcting codes. Consequently, $n$-dimensional toric quantum codes and burst-error-correcting quantum codes are provided offering both a good code rate and a significant coding gain when it comes to toric quantum codes. Another important consequence from the presented $n$-dimensional toric quantum codes is that if the Golomb and Welch conjecture in \cite{perfcodes} regarding the Lee sphere in $n$ dimensions for the respective close packings holds true, then it follows that these $n$-dimensional toric quantum codes are the only possible ones to be obtained from lattice codes. Moreover, such a methodology can be applied for burst error correction in cases involving localized errors, quantum data storage and quantum channels with memory.

Summary

We haven't generated a summary for this paper yet.