Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 110 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Diversity Explains Inference Scaling Laws: Through a Case Study of Minimum Bayes Risk Decoding (2410.15021v2)

Published 19 Oct 2024 in cs.CL

Abstract: Inference methods play an important role in eliciting the performance of LLMs. Currently, LLMs use inference methods utilizing generated multiple samples, which can be derived from Minimum Bayes Risk (MBR) Decoding. Previous studies have conducted empirical analyses to clarify the improvements in generation performance achieved by MBR decoding and have reported various observations. However, the theoretical underpinnings of these findings remain uncertain. To address this, we offer a new theoretical interpretation of MBR decoding from the perspective of bias-diversity decomposition. In this interpretation, the error in the quality estimation of hypotheses by MBR decoding is decomposed into two main factors: bias, which considers the closeness between the utility function and human evaluation, and diversity, which represents the variability in the quality estimation of the utility function. The theoretical analysis reveals the difficulty of simultaneously improving bias and diversity, confirming the validity of enhancing MBR decoding performance by increasing diversity. Furthermore, we reveal that diversity can explain one aspect of inference scaling laws that describe performance improvement by increasing sample size. Moreover, experiments across multiple NLP tasks yielded results consistent with these theoretical characteristics. Our code is available at https://github.com/naist-nlp/mbr-bias-diversity.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets