Better to Ask in English: Evaluation of Large Language Models on English, Low-resource and Cross-Lingual Settings (2410.13153v1)
Abstract: LLMs are trained on massive amounts of data, enabling their application across diverse domains and tasks. Despite their remarkable performance, most LLMs are developed and evaluated primarily in English. Recently, a few multi-lingual LLMs have emerged, but their performance in low-resource languages, especially the most spoken languages in South Asia, is less explored. To address this gap, in this study, we evaluate LLMs such as GPT-4, Llama 2, and Gemini to analyze their effectiveness in English compared to other low-resource languages from South Asia (e.g., Bangla, Hindi, and Urdu). Specifically, we utilized zero-shot prompting and five different prompt settings to extensively investigate the effectiveness of the LLMs in cross-lingual translated prompts. The findings of the study suggest that GPT-4 outperformed Llama 2 and Gemini in all five prompt settings and across all languages. Moreover, all three LLMs performed better for English language prompts than other low-resource language prompts. This study extensively investigates LLMs in low-resource language contexts to highlight the improvements required in LLMs and language-specific resources to develop more generally purposed NLP applications.