Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Nash equilibria in scalar discrete-time linear quadratic games (2410.12544v2)

Published 16 Oct 2024 in cs.GT and cs.MA

Abstract: An open problem in linear quadratic (LQ) games has been characterizing the Nash equilibria. This problem has renewed relevance given the surge of work on understanding the convergence of learning algorithms in dynamic games. This paper investigates scalar discrete-time infinite-horizon LQ games with two agents. Even in this arguably simple setting, there are no results for finding $\textit{all}$ Nash equilibria. By analyzing the best response map, we formulate a polynomial system of equations characterizing the linear feedback Nash equilibria. This enables us to bring in tools from algebraic geometry, particularly the Gr\"obner basis, to study the roots of this polynomial system. Consequently, we can not only compute all Nash equilibria numerically, but we can also characterize their number with explicit conditions. For instance, we prove that the LQ games under consideration admit at most three Nash equilibria. We further provide sufficient conditions for the existence of at most two Nash equilibria and sufficient conditions for the uniqueness of the Nash equilibrium. Our numerical experiments demonstrate the tightness of our bounds and showcase the increased complexity in settings with more than two agents.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube