Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Stein Variational Evolution Strategies (2410.10390v2)

Published 14 Oct 2024 in cs.LG, cs.AI, and cs.NE

Abstract: Stein Variational Gradient Descent (SVGD) is a highly efficient method to sample from an unnormalized probability distribution. However, the SVGD update relies on gradients of the log-density, which may not always be available. Existing gradient-free versions of SVGD make use of simple Monte Carlo approximations or gradients from surrogate distributions, both with limitations. To improve gradient-free Stein variational inference, we combine SVGD steps with evolution strategy (ES) updates. Our results demonstrate that the resulting algorithm generates high-quality samples from unnormalized target densities without requiring gradient information. Compared to prior gradient-free SVGD methods, we find that the integration of the ES update in SVGD significantly improves the performance on multiple challenging benchmark problems.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.