Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Model Is Not Built By A Single Prompt: LLM-Based Domain Modeling With Question Decomposition (2410.09854v1)

Published 13 Oct 2024 in cs.SE

Abstract: Domain modeling, a crucial part of model-driven engineering, demands extensive domain knowledge and experience from engineers. When the system description is highly complicated, the modeling task can become particularly challenging and time-consuming. LLMs(LLMs) can assist by automatically generating an initial object model from the system description. Although LLMs have demonstrated remarkable code-generation ability, they still struggle with model-generation using a single prompt. In real-world domain modeling, engineers usually decompose complex tasks into easily solvable sub-tasks, significantly controlling complexity and enhancing model quality. Inspired by this, we propose an LLM-based domain modeling approach via question decomposition, similar to developer's modeling process. Following conventional modeling guidelines, we divide the model generation task into several sub-tasks, i.e., class generation, association and aggregation generation, and inheritance generation. For each sub-task, we carefully design the prompt by choosing more efficient query words and providing essential modeling knowledge to unlock the modeling potential of LLMs. To sum up all the sub-tasks solutions, we implemente a proof-of-object tool integrated into the standard Ecore editor that asks LLMs to generate an object model from the system description. We evaluate our approach with 20 systems from different application domains. The preliminary results show that our approach outperforms the single-prompt-based prompt by improving recall values and F1 scores in most systems for modeling the classes, attributes, and relationships.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.