Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Can Knowledge Graphs Make Large Language Models More Trustworthy? An Empirical Study Over Open-ended Question Answering (2410.08085v4)

Published 10 Oct 2024 in cs.CL and cs.AI

Abstract: Recent works integrating Knowledge Graphs (KGs) have shown promising improvements in enhancing the reasoning capabilities of LLMs. However, existing benchmarks primarily focus on closed-ended tasks, leaving a gap in evaluating performance on more complex, real-world scenarios. This limitation also hinders a thorough assessment of KGs' potential to reduce hallucinations in LLMs. To address this, we introduce OKGQA, a new benchmark specifically designed to evaluate LLMs augmented with KGs in open-ended, real-world question answering settings. OKGQA reflects practical complexities through diverse question types and incorporates metrics to quantify both hallucination rates and reasoning improvements in LLM+KG models. To consider the scenarios in which KGs may contain varying levels of errors, we propose a benchmark variant, OKGQA-P, to assess model performance when the semantics and structure of KGs are deliberately perturbed and contaminated. In this paper, we aims to (1) explore whether KGs can make LLMs more trustworthy in an open-ended setting, and (2) conduct a comparative analysis to shed light on method design. We believe this study can facilitate a more complete performance comparison and encourages continuous improvement in integrating KGs with LLMs to mitigate hallucination, and make LLMs more trustworthy. Code and data are released at https://github.com/Y-Sui/OKGQA.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube