Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data Informativity for Quadratic Stabilization under Data Perturbation (2410.05702v1)

Published 8 Oct 2024 in math.OC, cs.SY, and eess.SY

Abstract: Assessing data informativity, determining whether the measured data contains sufficient information for a specific control objective, is a fundamental challenge in data-driven control. In noisy scenarios, existing studies deal with system noise and measurement noise separately, using quadratic matrix inequalities. Moreover, the analysis of measurement noise requires restrictive assumptions on noise properties. To provide a unified framework without any restrictions, this study introduces data perturbation, a novel notion that encompasses both existing noise models. It is observed that the admissible system set with data perturbation does not meet preconditions necessary for applying the key lemma in the matrix S-procedure. Our analysis overcomes this limitation by developing an extended version of this lemma, making it applicable to data perturbation. Our results unify the existing analyses while eliminating the need for restrictive assumptions made in the measurement noise scenario.

Summary

We haven't generated a summary for this paper yet.