Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximum Likelihood Estimation in Data-Driven Modeling and Control (2011.00925v3)

Published 2 Nov 2020 in eess.SY and cs.SY

Abstract: Recently, various algorithms for data-driven simulation and control have been proposed based on the Willems' fundamental lemma. However, when collected data are noisy, these methods lead to ill-conditioned data-driven model structures. In this work, we present a maximum likelihood framework to obtain an optimal data-driven model, the signal matrix model, in the presence of output noise. Data compression and noise level estimation schemes are also proposed to apply the algorithm efficiently to large datasets and unknown noise level scenarios. Two approaches in system identification and receding horizon control are developed based on the derived optimal estimator. The first one identifies a finite impulse response model. This approach improves the least-squares estimator with less restrictive assumptions. The second one applies the signal matrix model as the predictor in predictive control. The control performance is shown to be better than existing data-driven predictive control algorithms, especially under high noise levels. Both approaches demonstrate that the derived estimator provides a promising framework to apply data-driven algorithms to noisy data.

Citations (71)

Summary

We haven't generated a summary for this paper yet.