Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Double-Logarithmic Depth Block-Encodings of Simple Finite Difference Method's Matrices (2410.05241v1)

Published 7 Oct 2024 in quant-ph

Abstract: Solving differential equations is one of the most computationally expensive problems in classical computing, occupying the vast majority of high-performance computing resources devoted towards practical applications in various fields of science and engineering. Despite recent progress made in the field of quantum computing and quantum algorithms, its end-to-end application towards practical realization still remains unattainable. In this article, we tackle one of the primary obstacles towards this ultimate objective, specifically the encoding of matrices derived via finite difference method solving Poisson partial differential equations in simple boundary-value problems. To that end, we propose a novel methodology called block-diagonalization, which provides a common decomposition form for our matrices, and similarly a common procedure for block-encoding these matrices inside a unitary operator of a quantum circuit. The depth of these circuits is double-logarithmic in the matrix size, which is an exponential improvement over existing quantum methods and a superexponential improvement over existing classical methods. These improvements come at the price of a constant multiplicative overhead on the number of qubits and the number of gates. Combined with quantum linear solver algorithms, we can utilize these quantum circuits to produce a quantum state representation of the solution to the Poisson partial differential equations and their boundary-value problems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.