Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

CliMB: An AI-enabled Partner for Clinical Predictive Modeling (2410.03736v2)

Published 30 Sep 2024 in cs.HC, cs.AI, and cs.LG

Abstract: Despite its significant promise and continuous technical advances, real-world applications of AI remain limited. We attribute this to the "domain expert-AI-conundrum": while domain experts, such as clinician scientists, should be able to build predictive models such as risk scores, they face substantial barriers in accessing state-of-the-art (SOTA) tools. While automated machine learning (AutoML) has been proposed as a partner in clinical predictive modeling, many additional requirements need to be fulfilled to make machine learning accessible for clinician scientists. To address this gap, we introduce CliMB, a no-code AI-enabled partner designed to empower clinician scientists to create predictive models using natural language. CliMB guides clinician scientists through the entire medical data science pipeline, thus empowering them to create predictive models from real-world data in just one conversation. CliMB also creates structured reports and interpretable visuals. In evaluations involving clinician scientists and systematic comparisons against a baseline GPT-4, CliMB consistently demonstrated superior performance in key areas such as planning, error prevention, code execution, and model performance. Moreover, in blinded assessments involving 45 clinicians from diverse specialties and career stages, more than 80% preferred CliMB over GPT-4. Overall, by providing a no-code interface with clear guidance and access to SOTA methods in the fields of data-centric AI, AutoML, and interpretable ML, CliMB empowers clinician scientists to build robust predictive models. The proof-of-concept version of CliMB is available as open-source software on GitHub: https://github.com/vanderschaarlab/climb.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.