Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 478 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Semantic-Guided RL for Interpretable Feature Engineering (2410.02519v1)

Published 3 Oct 2024 in cs.LG

Abstract: The quality of Machine Learning (ML) models strongly depends on the input data, as such generating high-quality features is often required to improve the predictive accuracy. This process is referred to as Feature Engineering (FE). However, since manual feature engineering is time-consuming and requires case-by-case domain knowledge, Automated Feature Engineering (AutoFE) is crucial. A major challenge that remains is to generate interpretable features. To tackle this problem, we introduce SMART, a hybrid approach that uses semantic technologies to guide the generation of interpretable features through a two-step process: Exploitation and Exploration. The former uses Description Logics (DL) to reason on the semantics embedded in Knowledge Graphs (KG) to infer domain-specific features, while the latter exploits the knowledge graph to conduct a guided exploration of the search space through Deep Reinforcement Learning (DRL). Our experiments on public datasets demonstrate that SMART significantly improves prediction accuracy while ensuring a high level of interpretability.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.