Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Exponential Convergence of Augmented Primal-dual Gradient Algorithms for Partially Strongly Convex Functions (2410.02192v3)

Published 3 Oct 2024 in math.OC

Abstract: We show that the augmented primal-dual gradient algorithms can achieve global exponential convergence with partially strongly convex functions. In particular, the objective function only needs to be strongly convex in the subspace satisfying the equality constraint and can be generally convex elsewhere, provided the global Lipschitz condition for the gradient is satisfied. This condition implies that states outside the equality subspace will converge towards it exponentially fast. The analysis is then applied to distributed optimization, where the partially strong convexity can be relaxed to the restricted secant inequality condition, which is not necessarily convex. This work unifies global exponential convergence results for some existing centralized and distributed algorithms.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.