Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Scalable Cross-Entropy Loss for Sequential Recommendations with Large Item Catalogs (2409.18721v2)

Published 27 Sep 2024 in cs.IR and cs.LG

Abstract: Scalability issue plays a crucial role in productionizing modern recommender systems. Even lightweight architectures may suffer from high computational overload due to intermediate calculations, limiting their practicality in real-world applications. Specifically, applying full Cross-Entropy (CE) loss often yields state-of-the-art performance in terms of recommendations quality. Still, it suffers from excessive GPU memory utilization when dealing with large item catalogs. This paper introduces a novel Scalable Cross-Entropy (SCE) loss function in the sequential learning setup. It approximates the CE loss for datasets with large-size catalogs, enhancing both time efficiency and memory usage without compromising recommendations quality. Unlike traditional negative sampling methods, our approach utilizes a selective GPU-efficient computation strategy, focusing on the most informative elements of the catalog, particularly those most likely to be false positives. This is achieved by approximating the softmax distribution over a subset of the model outputs through the maximum inner product search. Experimental results on multiple datasets demonstrate the effectiveness of SCE in reducing peak memory usage by a factor of up to 100 compared to the alternatives, retaining or even exceeding their metrics values. The proposed approach also opens new perspectives for large-scale developments in different domains, such as LLMs.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.