Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Quantum Algorithms for Drone Mission Planning (2409.18631v1)

Published 27 Sep 2024 in quant-ph, cs.AI, and math.OC

Abstract: Mission planning often involves optimising the use of ISR (Intelligence, Surveillance and Reconnaissance) assets in order to achieve a set of mission objectives within allowed parameters subject to constraints. The missions of interest here, involve routing multiple UAVs visiting multiple targets, utilising sensors to capture data relating to each target. Finding such solutions is often an NP-Hard problem and cannot be solved efficiently on classical computers. Furthermore, during the mission new constraints and objectives may arise, requiring a new solution to be computed within a short time period. To achieve this we investigate near term quantum algorithms that have the potential to offer speed-ups against current classical methods. We demonstrate how a large family of these problems can be formulated as a Mixed Integer Linear Program (MILP) and then converted to a Quadratic Unconstrained Binary Optimisation (QUBO). The formulation provided is versatile and can be adapted for many different constraints with clear qubit scaling provided. We discuss the results of solving the QUBO formulation using commercial quantum annealers and compare the solutions to current edge classical solvers. We also analyse the results from solving the QUBO using Quantum Approximate Optimisation Algorithms (QAOA) and discuss their results. Finally, we also provide efficient methods to encode to the problem into the Variational Quantum Eigensolver (VQE) formalism, where we have tailored the ansatz to the problem making efficient use of the qubits available.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.