Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Implicit Neural Representation for Sparse-view Photoacoustic Computed Tomography (2409.13696v1)

Published 4 Sep 2024 in eess.IV

Abstract: High-quality imaging in photoacoustic computed tomography (PACT) usually requires a high-channel count system for dense spatial sampling around the object to avoid aliasing-related artefacts. To reduce system complexity, various image reconstruction approaches, such as model-based (MB) and deep learning based methods, have been explored to mitigate the artefacts associated with sparse-view acquisition. However, the explored methods formulated the reconstruction problem in a discrete framework, making it prone to measurement errors, discretization errors, and the extend of the ill-poseness of the problem scales with the discretization resolution. In this work, an implicit neural representation (INR) framework is proposed for image reconstruction in PACT with ring transducer arrays to address these issues. pecially, the initial heat distribution is represented as a continuous function of spatial coordinates using a multi-layer perceptron (MLP). The weights of the MLP are then determined by a training process in a self-supervised manner, by minimizing the errors between the measured and model predicted PA signals. After training, PA images can be mapped by feeding the coordinates to the network. Simulation and phantom experiments showed that the INR method performed best in preserving image fidelity and in artefacts suppression for the same acquisition condition, compared to universal back-projection and MB methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube