Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

$L^p$-boundedness of Riesz transforms on solvable extensions of Carnot groups (2409.13233v1)

Published 20 Sep 2024 in math.FA and math.CA

Abstract: Let $G=N\rtimes \mathbb{R}$, where $N$ is a Carnot group and $\mathbb{R}$ acts on $N$ via automorphic dilations. Homogeneous left-invariant sub-Laplacians on $N$ and $\mathbb{R}$ can be lifted to $G$, and their sum is a left-invariant sub-Laplacian $\Delta$ on $G$. We prove that the first-order Riesz transforms $X \Delta{-1/2}$ are bounded on $Lp(G)$ for all $p\in(1,\infty)$, where $X$ is any horizontal left-invariant vector field on $G$. This extends a previous result by Vallarino and the first-named author, who obtained the bound for $p\in(1,2]$. The proof makes use of an operator-valued spectral multiplier theorem, recently proved by the authors, and hinges on estimates for products of modified Bessel functions and their derivatives.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube