Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On the Hilbert Space of the Chern-Simons Matrix Model, Deformed Double Current Algebra Action, and the Conformal Limit (2409.12486v1)

Published 19 Sep 2024 in math-ph, hep-th, math.MP, math.QA, math.RT, and nlin.SI

Abstract: A Chern-Simons matrix model was proposed by Dorey, Tong, and Turner to describe non-Abelian fractional quantum Hall effect. In this paper we study the Hilbert space of the Chern-Simons matrix model from a geometric quantization point of view. We show that the Hilbert space of the Chern-Simons matrix model can be identified with the space of sections of a line bundle on the quiver variety associated to a framed Jordan quiver. We compute the character of the Hilbert space using localization technique. Using a natural isomorphism between vortex moduli space and a Beilinson-Drinfeld Schubert variety, we prove that the ground states wave functions are flat sections of a bundle of conformal blocks associated to a WZW model. In particular they solve a Knizhnik-Zamolodchikov equation. We show that there exists a natural action of the deformed double current algebra (DDCA) on the Hilbert space, moreover the action is irreducible. We define and study the conformal limit of the Chern-Simons matrix model. We show that the conformal limit of the Hilbert space is an irreducible integrable module of $\widehat{\mathfrak{gl}}(n)$ with level identified with the matrix model level. Moreover, we prove that $\widehat{\mathfrak{gl}}(n)$ generators can be obtained from scaling limits of matrix model operators, which settles a conjecture of Dorey-Tong-Turner. The key to the proof is the construction of a Yangian $Y(\mathfrak{gl}_n)$ action on the conformal limit of the Hilbert space, which we expect to be equivalent to the $Y(\mathfrak{gl}_n)$ action on the integrable $\widehat{\mathfrak{gl}}(n)$ modules constructed by Uglov. We also characterize eigenvectors and eigenvalues of the matrix model Hilbert space with respect to a maximal commutative subalgebra of Yangian.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.