Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

MQA-KEAL: Multi-hop Question Answering under Knowledge Editing for Arabic Language (2409.12257v1)

Published 18 Sep 2024 in cs.CL

Abstract: LLMs have demonstrated significant capabilities across numerous application domains. A key challenge is to keep these models updated with latest available information, which limits the true potential of these models for the end-applications. Although, there have been numerous attempts for LLMs Knowledge Editing (KE), i.e., to edit the LLMs prior knowledge and in turn test it via Multi-hop Question Answering (MQA), yet so far these studies are primarily focused on English language. To bridge this gap, in this paper we propose: Multi-hop Questioning Answering under Knowledge Editing for Arabic Language (MQA-KEAL). MQA-KEAL stores knowledge edits as structured knowledge units in the external memory. In order to solve multi-hop question, it first uses task-decomposition to decompose the question into smaller sub-problems. Later for each sub-problem, it iteratively queries the external memory and/or target LLM in order to generate the final response. In addition, we also contribute MQUAKE-AR (Arabic translation of English benchmark MQUAKE), as well as a new benchmark MQA-AEVAL for rigorous performance evaluation of MQA under KE for Arabic language. Experimentation evaluation reveals MQA-KEAL outperforms the baseline models by a significant margin.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.