Conformal Fields from Neural Networks (2409.12222v1)
Abstract: We use the embedding formalism to construct conformal fields in $D$ dimensions, by restricting Lorentz-invariant ensembles of homogeneous neural networks in $(D+2)$ dimensions to the projective null cone. Conformal correlators may be computed using the parameter space description of the neural network. Exact four-point correlators are computed in a number of examples, and we perform a 4D conformal block decomposition that elucidates the spectrum. In some examples the analysis is facilitated by recent approaches to Feynman integrals. Generalized free CFTs are constructed using the infinite-width Gaussian process limit of the neural network, enabling a realization of the free boson. The extension to deep networks constructs conformal fields at each subsequent layer, with recursion relations relating their conformal dimensions and four-point functions. Numerical approaches are discussed.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run paper prompts using GPT-5.